用户名: 密码: 验证码:
Quantitative trait locus analysis for pod- and kernel-related traits in the cultivated peanut (Arachis hypogaea L.)
详细信息    查看全文
  • 作者:Weigang Chen ; Yongqing Jiao ; Liangqiang Cheng ; Li Huang ; Boshou Liao…
  • 关键词:Peanut (Arachis hypogaea L.) ; QTL analysis ; Pod length ; Pod width ; Seed length ; Seed width
  • 刊名:BMC Genetics
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:17
  • 期:1
  • 全文大小:675 KB
  • 参考文献:1.Food and Agriculture Organization of the United Nations. http://​faostat3.​fao.​org/​browse/​Q/​QC/​E . Accessed 8 Jun 2015.
    2.Gomes RLF, Lopes AA. Correlations and path analysis in peanut. Crop Breeding and Applied Biotechnology. 2005;5(1):105–10.CrossRef
    3.Buerstmayr H, Lemmens M, Hartl L, Doldi L, Steiner B, Stierschneider M, et al. Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. I. Resistance to fungal spread (Type II resistance). Theor Appl Genet. 2002;104(1):84–91.CrossRef PubMed
    4.Jiao Y, Vuong T, Liu Y, Li Z, Noe J, Robbins R, et al. Identification of quantitative trait loci underlying resistance to southern root-knot and reniform nematodes in soybean accession PI 567516C. Mol Breeding. 2015;35(6):1–10.CrossRef
    5.Foiada F, Westermeier P, Kessel B, Ouzunova M, Wimmer V, Mayerhofer W, et al. Improving resistance to the European corn borer: a comprehensive study in elite maize using QTL mapping and genome-wide prediction. Theor Appl Genet. 2015;128(5):875–91.CrossRef PubMed
    6.Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet. 2006;112(6):1164–71.CrossRef PubMed
    7.Zhang T, Yuan Y, Yu J, Guo W, Kohel R. Molecular tagging of a major QTL for fiber strength in Upland cotton and its marker-assisted selection. Theor Appl Genet. 2003;106(2):262–8.PubMed
    8.Moretzsohn M, Hopkins M, Mitchell S, Kresovich S, Valls J, Ferreira M. Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome. BMC Plant Biol. 2004;4(1):11.PubMedCentral CrossRef
    9.Gomez Selvaraj M, Narayana M, Schubert AM, Ayers JL, Baring MR, Burow MD. Identification of QTLs for pod and kernel traits in cultivated peanut by bulked segregant analysis. Electronic Journal of Biotechnology. 2009;12(2):3–4.CrossRef
    10.Khedikar Y, Gowda M, Sarvamangala C, Patgar K, Upadhyaya H, Varshney R. A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.). Theor Appl Genet. 2010;121(5):971–84.PubMedCentral CrossRef PubMed
    11.Wang H, Pandey MK, Qiao L, Qin H, Culbreath AK, He G et al. Genetic Mapping and Quantitative Trait Loci Analysis for Disease Resistance Using F2 and F5 Generation-based Genetic Maps Derived from ‘Tifrunner’ × ‘GT-C20’ in Peanut. The Plant Genome. 2013;6(3).
    12.Ravi K, Vadez V, Isobe S, Mir R, Guo Y, Nigam S, et al. Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). Theor Appl Genet. 2011;122(6):1119–32.PubMedCentral CrossRef PubMed
    13.Shirasawa K, Koilkonda P, Aoki K, Hirakawa H, Tabata S, Watanabe M, et al. In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biol. 2012;12(1):80.PubMedCentral CrossRef PubMed
    14.Varshney R, Bertioli D, Moretzsohn M, Vadez V, Krishnamurthy L, Aruna R, et al. The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theor Appl Genet. 2009;118(4):729–39.CrossRef PubMed
    15.Hong Y, Chen X, Liang X, Liu H, Zhou G, Li S, et al. A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L.) genome. BMC Plant Biol. 2010;10(1):17.PubMedCentral CrossRef PubMed
    16.Qin H, Feng S, Chen C, Guo Y, Knapp S, Culbreath A, et al. An integrated genetic linkage map of cultivated peanut (Arachis hypogaea L.) constructed from two RIL populations. Theor Appl Genet. 2012;124(4):653–64.CrossRef PubMed
    17.Shirasawa K, Bertioli DJ, Varshney RK, Moretzsohn MC, Leal-Bertioli SC, Thudi M, et al. Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of the legume genomes. DNA Res. 2013;20(2):173–84.
    18.Zhou X, Xia Y, Ren X, Chen Y, Huang L, Huang S, et al. Construction of a SNP-based genetic linkage map in cultivated peanut based on large scale marker development using next-generation double-digest restriction-site-associated DNA sequencing (ddRADseq). BMC Genomics. 2014;15(1):351.PubMedCentral CrossRef PubMed
    19.Doyle JJ. Isolation of plant DNA from fresh tissue. Focus. 1990;12:13–5.
    20.Wu X, Blake S, Sleper DA, Shannon JG, Cregan P, Nguyen HT. QTL, additive and epistatic effects for SCN resistance in PI 437654. Theor Appl Genet. 2009;118(6):1093–105.CrossRef PubMed
    21.Van Ooijen JW, Voorrips R. JoinMap® 3.0, Software for the calculation of genetic linkage maps. Plant research international, Wageningen 2001:1–51.
    22.Kosambi D. The estimation of map distances from recombination values. Ann Eugen. 1943;12(1):172–5.CrossRef
    23.Wang S, Basten CJ, Zeng Z-B. Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. 2012.(http://​statgen.​ncsu.​edu/​qtlcart/​WQTLCart.​htm ). Accessed 8 April 2012.
    24.Zeng Z-B. Precision mapping of quantitative trait loci. Genetics. 1994;136(4):1457–68.PubMedCentral PubMed
    25.Churchill GA, Doerge RW. Empirical threshold values for quantitative trait mapping. Genetics. 1994;138(3):963–71.PubMedCentral PubMed
    26.Udall JA, Quijada PA, Lambert B, Osborn TC. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 2. Identification of alleles from unadapted germplasm. Theor Appl Genet. 2006;113(4):597–609.CrossRef PubMed
  • 作者单位:Weigang Chen (1)
    Yongqing Jiao (1)
    Liangqiang Cheng (1)
    Li Huang (1)
    Boshou Liao (1)
    Mei Tang (1)
    Xiaoping Ren (1)
    Xiaojing Zhou (1)
    Yuning Chen (1)
    Huifang Jiang (1)

    1. Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
  • 刊物主题:Life Sciences, general; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics; Genetics and Population Dynamics;
  • 出版者:BioMed Central
  • ISSN:1471-2156
文摘
Background The cultivated peanut (Arachis hypogaea L.) is an important oil and food crop in the world. Pod- and kernel-related traits are direct factors involved in determining the yield of the peanut. However, the genetic basis underlying pod- and kernel-related traits in the peanut remained largely unknown, which hampered the improvement of peanut through marker-assisted selection. To understand the genetic basis underlying pod- and kernel-related traits in the peanut and provide more useful information for marker-assisted breeding, we conducted quantitative trait locus (QTL) analysis for pod length and width and seed length and width by use of two F2:3 populations derived from cultivar Fuchuan Dahuasheng × ICG 6375 (FI population) and cultivar Xuhua 13 × cultivar Zhonghua 6 (XZ population) in this study.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700