用户名: 密码: 验证码:
Exposure assessment and heart rate variability monitoring in workers handling titanium dioxide particles: a pilot study
详细信息    查看全文
  • 作者:Sahoko Ichihara ; Weihua Li ; Seiichi Omura…
  • 关键词:Titanium dioxide ; Heart rate variability ; Nanoparticles ; Nanomaterial exposure ; Health and environmental effects
  • 刊名:Journal of Nanoparticle Research
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:18
  • 期:3
  • 全文大小:2,153 KB
  • 参考文献:Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger AC, Cohen RJ (1981) Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 213:220–222CrossRef
    Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, Cogliano V et al (2006) Carcinogenicity of carbon black, titanium dioxide, and talc. Lancet Oncol 7:295–296CrossRef
    Baisch BL, Corson NM, Wade-Mercer P, Gelein R, Kennell AJ, Oberdörster G et al (2014) Equivalent titanium dioxide nanoparticle deposition by intratracheal instillation and whole body inhalation: the effect of dose rate on acute respiratory tract inflammation. Part Fibre Toxicol 11:5CrossRef
    Bianchi MG, Allegri M, Costa AL, Blosi M, Gardini D, Del Pivo C et al (2015) Titanium dioxide nanoparticles enhance macrophage activation by LPS through a TLR4-dependent intracellular pathway. Toxicol Res 4:385–398CrossRef
    Boffetta P, Gaborieau V, Nadon L, Parent MF, Weiderpass E, Siemiatycki J (2001) Exposure to titanium dioxide and risk of lung cancer in a population-based study from montreal. Scand J Work Environ Health 27:227–232CrossRef
    Boffetta P, Soutar A, Cherrie JW, Granath F, Andersen A, Anttila A et al (2004) Mortality among workers employed in the titanium dioxide production industry in Europe. Cancer Causes Control 15:697–706CrossRef
    Bortkiewicz A, Gadzicka E, Stroszejn-Mrowca G, Szyjkowska A, Szymczak W, Koszada-Włodarczyk W et al (2014) Cardiovascular changes in workers exposed to fine particulate dust. Int J Occup Med Environ Health 27:78–92CrossRef
    Brook RD, Franklin B, Cascio W, Hong Y, Howard G, Lipsett M et al (2004) Air pollution and cardiovascular disease: a statement for healthcare professionals from the expert panel on population and prevention science of the american heart association. Circulation 109:2655–2671CrossRef
    Cavallari JM, Fang SC, Mittleman MA, Christiani DC (2010) Circadian variation of heart rate variability among welders. Occup Environ Med 67:717–719CrossRef
    Chen JL, Fayerweather WE (1988) Epidemiologic study of workers exposed to titanium dioxide. J Occup Med 30:937–942CrossRef
    Fan T, Fang SC, Cavallari JM, Barnett IJ, Wang Z, Su L et al (2014) Heart rate variability and DNA methylation levels are altered after short-term metal fume exposure among occupational welders: a repeated-measures panel study. BMC Public Health 14:1279CrossRef
    Fryzek JP, Chadda B, Marano D, White K, Schweitzer S, McLaughlin JK et al (2003) A cohort mortality study among titanium dioxide manufacturing workers in the United States. J Occup Environ Med 45:400–409CrossRef
    Fujitani Y, Kobayashi T, Arashidani K, Kunugita N, Suemura K (2008) Measurement of the physical properties of aerosols in a fullerene factory for inhalation exposure assessment. J Occup Environ Hyg 5:380–389CrossRef
    Garabrant DH, Fine LJ, Oliver C, Bernstein L, Peters JM (1987) Abnormalities of pulmonary function and pleural disease among titanium metal production workers. Scand J Work Environ Health 13:47–51CrossRef
    Halappanavar S, Saber AT, Decan N, Jensen KA, Wu D, Jacobsen NR et al (2015) Transcriptional profiling identifies physicochemical properties of nanomaterials that are determinants of the in vivo pulmonary response. Environ Mol Mutagen 56:245–264CrossRef
    Heinrich U, Fuhst R, Rittinghausen S, Creutzenberg O, Bellmann B, Koch W et al (1995) Chronic inhalation exposure of Wistar rats and two different strains of mice to diesel engine exhaust, carbon black, and titanium dioxide. Inhal Toxicol 7:533–556CrossRef
    Iavicoli I, Leso V, Bergamaschi A (2012) Toxicological effects of titanium dioxide nanoparticles: a review of in vivo studies. J Nanomater 2012:1–36
    Ichihara G, Li W, Kobayashi T, Ding X, Fujitani Y, Liu Y et al (2008) Occupational health survey on workers handling titanium dioxide. Toxicol Lett 180:S222CrossRef
    Japan Society for Occupational Health (2014) Recommendation of occupational exposure limits; 2014. Sangyo Eiseigaku Zasshi 56:162–188 (in Japanese) CrossRef
    Kaegi R, Ulrich A, Sinnet B, Vonbank R, Wichser A, Zuleeg S et al (2008) Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ Pollut 156:233–239CrossRef
    LeBlanc AJ, Cumpston JL, Chen BT, Frazer D, Castranova V, Nurkiewicz TR (2009) Nanoparticle inhalation impairs endothelium-dependent vasodilation in subepicardial arterioles. J Toxicol Environ Health A 72:1576–1584CrossRef
    Lee KP, Trochimowicz HJ, Reinhardt CF (1985) Pulmonary response of rats exposed to titanium dioxide (TiO2) by inhalation for two years. Toxicol Appl Pharmacol 79:179–192CrossRef
    Legramante JM, Valentini F, Magrini A, Palleschi G, Sacco S, Iavicoli I et al (2009) Cardiac autonomic regulation after lung exposure to carbon nanotubes. Hum Exp Toxicol 28:369–375CrossRef
    Luttmann-Gibson H, Suh HH, Coull BA, Dockery DW, Sarnat SE, Schwartz J et al (2010) Systemic inflammation, heart rate variability and air pollution in a cohort of senior adults. Occup Environ Med 67:625–630CrossRef
    Magari SR, Hauser R, Schwartz J, Williams PL, Smith TJ, Christiani DC (2001) Association of heart rate variability with occupational and environmental exposure to particulate air pollution. Circulation 104:986–991CrossRef
    Maynard AD, Baron PA, Foley M, Shvedova AA, Kisin ER, Castranova V (2004) Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J Toxicol Environ Health A 67:87–107CrossRef
    Meier R, Cascio WE, Ghio AJ, Wild P, Danuser B, Riediker M (2014) Associations of short-term particle and noise exposures with markers of cardiovascular and respiratory health among highway maintenance workers. Environ Health Perspect 122:726–732
    Merchant JA (1990) Human epidemiology: a review of fiber type and characteristics in the development of malignant and nonmalignant disease. Environ Health Perspect 88:287–293CrossRef
    Methner M, Hodson L, Geraci C (2010) Nanoparticle emission assessment technique (neat) for the identification and measurement of potential inhalation exposure to engineered nanomaterials—part A. J Occup Environ Hyg 7:127–132CrossRef
    National Institute for Occupational Safety and Health (NIOSH) (2011a) Current intelligence bulletin 63: occupational exposure to titanium dioxide. Publication No. 2011-160, US Department of Health and Human Services, Public Health Service, Centers for Disease Control, National Institute of Occupational Safety and Health, DHHS (NIOSH), Cincinnati
    National Institute for Occupational Safety and Health (NIOSH) (2011b) Particulates. http://​www.​cdc.​gov/​niosh/​pel88/​DUSTS.​html
    Nemmar A, Melghit K, Al-Salam S, Zia S, Dhanasekaran S, Attoub S et al (2011) Acute respiratory and systemic toxicity of pulmonary exposure to rutile Fe-doped TiO2 nanorods. Toxicology 279:167–175CrossRef
    Ono-Ogasawara M, Myojo T (2011) A proposal of method for evaluating airborne MWCNT concentration. Ind Health 49:726–734CrossRef
    Park SK, O’Neill MS, Vokonas PS, Sparrow D, Schwartz J (2005) Effects of air pollution on heart rate variability: the VA normative aging study. Environ Health Perspect 113:304–309CrossRef
    Patri A, Umbreit T, Zheng J, Nagashima K, Goering P, Francke-Carroll S et al (2009) Energy dispersive x-ray analysis of titanium dioxide nanoparticle distribution after intravenous and subcutaneous injection in mice. J Appl Toxicol 29:662–672CrossRef
    Ramanakumar AV, Parent ME, Latreille B, Siemiatycki J (2008) Risk of lung cancer following exposure to carbon black, titanium dioxide and talc: results from two case–control studies in montreal. Int J Cancer 122:183–189CrossRef
    Rhoden CR, Wellenius GA, Ghelfi E, Lawrence J, Gonzalez-Flecha B (2005) PM-induced cardiac oxidative stress and dysfunction are mediated by autonomic stimulation. Biochim Biophys Acta 1725:305–313CrossRef
    Sager TM, Castranova V (2009) Surface area of particle administered versus mass in determining the pulmonary toxicity of ultrafine and fine carbon black: comparison to ultrafine titanium dioxide. Part Fibre Toxicol 6:15CrossRef
    Sager TM, Kommineni C, Castranova V (2008) Pulmonary response to intratracheal instillation of ultrafine versus fine titanium dioxide: role of particle surface area. Part Fibre Toxicol 5:17CrossRef
    Savi M, Rossi S, Bocchi L, Gennaccaro L, Cacciani F, Perotti A, Amidani D, Alinovi R, Goldoni M, Aliatis I, Lottici PP, Bersani D, Campanini M, Pinelli S, Petyx M, Frati C, Gervasi A, Urbanek K, Quaini F, Buschini A, Stilli D, Rivetti C, Macchi E, Mutti A, Miragoli M, Zaniboni M (2014) Titanium dioxide nanoparticles promote arrhythmias via a direct interaction with rat cardiac tissue. Part Fibre Toxicol 11:63CrossRef
    Scherbart AM, Langer J, Bushmelev A, van Berlo D, Haberzettl P, van Schooten FJ et al (2011) Contrasting macrophage activation by fine and ultrafine titanium dioxide particles is associated with different uptake mechanisms. Part Fibre Toxicol 8:31CrossRef
    Schneider A, Hampel R, Ibald-Mulli A, Zareba W, Schmidt G, Schneider R, Rückerl R, Couderc JP, Mykins B, Oberdörster G, Wölke G, Pitz M, Wichmann HE, Peters A (2010) Changes in deceleration capacity of heart rate and heart rate variability induced by ambient air pollution in individuals with coronary artery disease. Part Fibre Toxicol 7:29CrossRef
    Shi H, Magaye R, Castranova V, Zhao J (2013) Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 10:15CrossRef
    Stampfl A, Maier M, Radykewicz R, Reitmeir P, Gottlicher M, Niessner R (2011) Langendorff heart: a model system to study cardiovascular effects of engineered nanoparticles. ACS Nano 5:5345–5353CrossRef
    Taelman J, Vandeput S, Gligorijević I, Spaepen A, Van Huffel S (2011) Time-frequency heart rate variability characteristics of young adults during physical, mental and combined stress in laboratory environment. Conf Proc IEEE Eng Med Biol Soc 2011:1973–1976
    Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 93:1043–1065CrossRef
    Tsuji H, Larson MG, Venditti FJ Jr, Manders ES, Evans JC, Feldman CL et al (1996) Impact of reduced heart rate variability on risk for cardiac events. The framingham heart study. Circulation 94:2850–2855CrossRef
    Utell MJ, Frampton MW, Zareba W, Devlin RB, Cascio WE (2002) Cardiovascular effects associated with air pollution: potential mechanisms and methods of testing. Inhal Toxicol 14:1231–1247CrossRef
    Warheit DB, Webb TR, Sayes CM, Colvin VL, Reed KL (2006) Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon particle size and surface area. Toxicol Sci 91:227–236CrossRef
    Weichenthal S, Kulka R, Dubeau A, Martin C, Wang D, Dales R (2011) Traffic-related air pollution and acute changes in heart rate variability and respiratory function in urban cyclists. Environ Health Perspect 119:1373–1378CrossRef
    Zareba W, Nomura A, Couderc JP (2001) Cardiovascular effects of air pollution: what to measure in ECG? Environ Health Perspect 109(Suppl 4):533–538CrossRef
    Zhen S, Qian Q, Jia G, Zhang J, Chen C, Wei Y (2012) A panel study for cardiopulmonary effects produced by occupational exposure to inhalable titanium dioxide. J Occup Environ Med 54:1389–1394CrossRef
  • 作者单位:Sahoko Ichihara (1)
    Weihua Li (2)
    Seiichi Omura (3)
    Yuji Fujitani (4)
    Ying Liu (2)
    Qiangyi Wang (2)
    Yusuke Hiraku (5)
    Naomi Hisanaga (6)
    Kenji Wakai (7)
    Xuncheng Ding (2)
    Takahiro Kobayashi (3) (4) (9)
    Gaku Ichihara (8)

    1. Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan
    2. Shanghai Institute of Planned Parenthood Research, WHO Collaborating Centre for Research in Human Reproduction, Shanghai, China
    3. Tokyo Institute of Technology, Yokohama, Japan
    4. National Institute for Environmental Studies, Tsukuba, Japan
    5. Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Japan
    6. Faculty of Human Science and Design, Aichi Gakusen University, Okazaki, Japan
    7. Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
    9. Association for International Research Initiatives for Environmental Studies, 1-4-4 Ueno, Taito-ku, Tokyo, 110-0005, Japan
    8. Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Nanotechnology
    Inorganic Chemistry
    Characterization and Evaluation Materials
    Physical Chemistry
    Applied Optics, Optoelectronics and Optical Devices
  • 出版者:Springer Netherlands
  • ISSN:1572-896X
文摘
Titanium dioxide (TiO2) particles are used for surface coating and in a variety of products such as inks, fibers, food, and cosmetics. The present study investigated possible respiratory and cardiovascular effects of TiO2 particles in workers exposed to this particle at high concentration in a factory in China. The diameter of particles collected on filters was measured by scanning electron microscopy. Real-time size-dependent particle number concentration was monitored in the nostrils of four workers using condensation particle counter and optical particle counter. Electrocardiogram was recorded using Holter monitors for the same four workers to record heart rate variability. Sixteen workers underwent assessment of the respiratory and cardiovascular systems. Mass-based individual exposure levels were also measured with personal cascade impactors. The primary particle diameter ranged from 46 to 562 nm. Analysis of covariance of the pooled data of the four workers showed that number of particles with a diameter <300 nm was associated positively with total number of N–N and negatively with total number of increase or decrease in successive RR intervals greater than 50 ms (RR50+/−) or percentage of RR 50+/− that were parameters of parasympathetic function. The total mass concentration was 9.58–30.8 mg/m3 during work, but significantly less before work (0.36 mg/m3). The clear abnormality in respiratory function was not observed in sixteen workers who had worked for 10 months to 13 years in the factory. The study showed that exposure to particles with a diameter <300 nm might affect HRV in workers handling TiO2 particles. The results highlight the need to investigate the possible impact of exposure to nano-scaled particles on the autonomic nervous system.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700