用户名: 密码: 验证码:
Localized protein immobilization on microstructured polymeric surfaces for diagnostic applications
详细信息    查看全文
  • 作者:Nicole E. Steidle ; Thomas Hahn ; Christian Bader…
  • 关键词:Lab ; on ; a ; chip ; Microfabrication ; Protein immobilization ; CRP
  • 刊名:Microfluidics and Nanofluidics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:20
  • 期:2
  • 全文大小:1,147 KB
  • 参考文献:Ansar W, Ghosh S (2013) C-reactive protein and the biology of disease. Immunol Res 56:131–142. doi:10.​1007/​s12026-013-8384-0 CrossRef
    Becker H, Gärtner C (2008) Polymer microfabrication technologies for microfluidic systems. Anal Bioanal Chem 390:89–111. doi:10.​1007/​s00216-007-1692-2 CrossRef
    Bernard A, Renault JP, Michel B, Bosshard HR, Delamarche E (2000) Microcontact printing of proteins. Adv Mater 12:1067–1070. doi:10.​1002/​1521-4095(200007)12:​14<1067:​aid-adma1067>3.​0.​co;2-m CrossRef
    Bruckbauer A, Zhou DJ, Ying LM, Korchev YE, Abell C, Klenerman D (2003) Multicomponent submicron features of biomolecules created by voltage controlled deposition from a nanopipet. J Am Chem Soc 125:9834–9839. doi:10.​1021/​ja035755v CrossRef
    Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551. doi:10.​1039/​TF9444000546 CrossRef
    Chen H, Yuan L, Song W, Wu Z, Li D (2008) Biocompatible polymer materials: role of protein–surface interactions. Prog Polym Sci 33:1059–1087. doi:10.​1016/​j.​progpolymsci.​2008.​07.​006 CrossRef
    Chłopek J, Czajkowska B, Szaraniec B, Frackowiak E, Szostak K, Béguin F (2006) In vitro studies of carbon nanotubes biocompatibility. Carbon 44:1106–1111. doi:10.​1016/​j.​carbon.​2005.​11.​022 CrossRef
    Deng Y, Zhu XY, Kienlen T, Guo A (2006) Transport at the air/water interface is the reason for rings in protein microarrays. J Am Chem Soc 128:2768–2769. doi:10.​1021/​ja057669w CrossRef
    Dörner K (2009) Klinische Chemie und Hämatologie, 7th edn. Thieme, Stuttgart
    Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984. doi:10.​1021/​ac980656z CrossRef
    Gao D, Lin D-Q, Yao S-J (2007) Mechanistic analysis on the effects of salt concentration and pH on protein adsorption onto a mixed-mode adsorbent with cation ligand. J Chromatogr B 859:16–23. doi:10.​1016/​j.​jchromb.​2007.​08.​044 CrossRef
    Halldorsson S, Lucumi E, Gomez-Sjoeberg R, Fleming RMT (2015) Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens Bioelectron 63:218–231. doi:10.​1016/​j.​bios.​2014.​07.​029 CrossRef
    Heckele M, Bacher W, Muller KD (1998) Hot embossing—the molding technique for plastic microstructures. Microsyst Technol 4:122–124. doi:10.​1007/​s005420050112 CrossRef
    Holden MA, Cremer PS (2003) Light activated patterning of dye-labeled molecules on surfaces. J Am Chem Soc 125:8074–8075. doi:10.​1021/​ja035390e CrossRef
    Jena RK, Chester SA, Srivastava V, Yue CY, Anand L, Lam YC (2011) Large-strain thermo-mechanical behavior of cyclic olefin copolymers: application to hot embossing and thermal bonding for the fabrication of microfluidic devices. Sens Actuators B Chem 155:93–105. doi:10.​1016/​j.​snb.​2010.​11.​031 CrossRef
    Jeon JS, Chung S, Kamm RD, Charest JL (2011) Hot embossing for fabrication of a microfluidic 3D cell culture platform. Biomed Microdevices 13:325–333. doi:10.​1007/​s10544-010-9496-0 CrossRef
    Kashaninejad N, Chan WK, Nam-Trung N (2012) Eccentricity effect of micropatterned surface on contact angle. Langmuir 28:4793–4799. doi:10.​1021/​la300416x CrossRef
    Khang G, Lee HB, Park JB (1995) Biocompatibility of polysulfone 1. Surface modifications and characterizations. Bio-Med Mater Eng 5:245–258
    Kim E, Xia Y, Whitesides GM (1995) Polymer microstructures formed by moulding in capillaries. Nature 376:581–584CrossRef
    McDonald JC, Whitesides GM (2002) Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35:491–499. doi:10.​1021/​ar010110q CrossRef
    Meyers L, Frawley T, Goss S, Kang C (2015) Ebola virus outbreak 2014: clinical review for emergency physicians. Ann Emerg Med 65:101–108. doi:10.​1016/​j.​annemergmed.​2014.​10.​009 CrossRef
    Norde W, Lyklema J (1991) Why proteins prefer interfaces. J Biomater Sci Polym Ed 2:183–202CrossRef
    Osborne L, Knight R, Santis G, Hodson M (1991) A mutation in the 2nd nucleotide binding fold of the cystic-fibrosis gene. Am J Hum Genet 48:608–612
    Ostuni E, Chen CS, Ingber DE, Whitesides GM (2001) Selective deposition of proteins and cells in arrays of microwells. Langmuir 17:2828–2834. doi:10.​1021/​la001372o CrossRef
    Patankar NA (2003) On the modeling of hydrophobic contact angles on rough surfaces. Langmuir 19:1249–1253. doi:10.​1021/​la026612+ CrossRef
    Shirtcliffe NJ, Aqil S, Evans C, McHale G, Newton MI, Perry CC, Roach P (2004) The use of high aspect ratio photoresist (SU-8) for super-hydrophobic pattern prototyping. J Micromech Microeng 14:1384–1389. doi:10.​1088/​0960-1317/​14/​10/​013 CrossRef
    Shirtcliffe NJ, McHale G, Atherton S, Newton MI (2010) An introduction to superhydrophobicity. Adv Colloid Interface Sci 161:124–138. doi:10.​1016/​j.​cis.​2009.​11.​001 CrossRef
    Song H-M, Lee C-S (2008) Simple fabrication of functionalized surface with polyethylene glycol microstructure and glycidyl methacrylate moiety for the selective immobilization of proteins and cells. Korean J Chem Eng 25:1467–1472CrossRef
    Steidle NE, Schneider M, Ahrens R, Worgull M, Guber AE (2013) Fabrication of polymeric microfluidic devices with tunable wetting behavior for biomedical applications. In: Conference proceedings: annual international conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual Conference 2013, pp 6659–6662. doi:10.​1109/​embc.​2013.​6611083
    Suh KY, Seong J, Khademhosseini A, Laibinis PE, Langer R (2004) A simple soft lithographic route to fabrication of poly(ethylene glycol) microstructures for protein and cell patterning. Biomaterials 25:557–563. doi:10.​1016/​s0142-9612(03)00543-x CrossRef
    Waldbaur A, Rapp H, Länge K, Rapp BE (2011) Let there be chip-towards rapid prototyping of microfluidic devices: one-step manufacturing processes. Anal Methods 3:2681–2716. doi:10.​1039/​c1ay05253e CrossRef
    Waldbaur A, Waterkotte B, Schmitz K, Rapp BE (2012) Maskless projection lithography for the fast and flexible generation of grayscale protein patterns. Small 8:1570–1578. doi:10.​1002/​smll.​201102163 CrossRef
    Worgull M (2009) Hot embossing: theory and technology of microreplication. Micro and nano technologies. William Andrew Publishing, Boston
  • 作者单位:Nicole E. Steidle (1)
    Thomas Hahn (2)
    Christian Bader (1)
    Ralf Ahrens (1)
    Bastian E. Rapp (1)
    Andreas E. Guber (1)
    Kerstin Länge (1)

    1. Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
    2. Bürkert Werke GmbH & Co. KG, Christian-Bürkert-Str. 13-17, 74653, Ingelfingen, Germany
  • 刊物类别:Engineering
  • 刊物主题:Engineering Fluid Dynamics
    Medical Microbiology
    Polymer Sciences
    Nanotechnology
    Mechanics, Fluids and Thermodynamics
    Engineering Thermodynamics and Transport Phenomena
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1613-4990
文摘
We demonstrate a localized protein immobilization method based on controlled physical adsorption on the three-phase boundary of an aqueous phase, a gas phase, and a polymeric material. By imprinting micrometer and sub-micrometer pillars onto a polymeric foil, superhydrophobic surfaces are fabricated. Those structures force the fluid locally into the Cassie–Baxter state and generate an artificial three-phase boundary at the edges of the imprinted pillars. First, fluorescence-labeled bovine serum albumin (BSA) and streptavidin dissolved in various buffer solutions are utilized to investigate protein adsorption on the structured surfaces. A stable adsorption of the respective protein on the three-phase boundary is observed. The following experiments use streptavidin adsorbed on the pillars to immobilize biotinylated antibodies for analyte detection. The pillars are passivated with an excess concentration of BSA to reduce nonspecific protein adsorption. Implemented in a lab-on-a-chip device, the proposed immobilization method is utilized in a sandwich assay to detect the inflammation marker C-reactive protein in human serum, showing the potential of this immobilization method for diagnostic applications. The method overcomes laborious procedures to immobilize proteins on thermoplastic materials, which enables the fast transfer of point-of-care applications from research to commercial scale. Keywords Lab-on-a-chip Microfabrication Protein immobilization CRP

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700