用户名: 密码: 验证码:
A simple estimation of equatorial Pacific response from windstress to untangle Indian Ocean Dipole and Basin influences on El Niño
详细信息    查看全文
  • 作者:T. Izumo ; J. Vialard ; H. Dayan ; M. Lengaigne ; I. Suresh
  • 关键词:El Niño Southern Oscillation (ENSO) ; Equatorial Pacific Ocean dynamics ; Convolution to impulse response of a linear system ; Atmospheric teleconnections ; Indian Ocean Dipole mode (IOD) and Basin ; wide warming/cooling (IOB) ; Linear Continuously Stratified model (LCS)
  • 刊名:Climate Dynamics
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:46
  • 期:7-8
  • 页码:2247-2268
  • 全文大小:4,760 KB
  • 参考文献:Annamalai H, Xie SP, McCreary JP, Murtugudde R (2005) Impact of Indian Ocean sea surface temperature on developing El Niño. J Clim 18:302–319CrossRef
    Annamalai H, Kida S, Hafner J (2010) Potential impact of the tropical Indian Ocean-Indonesian Seas on El Niño characteristics. J Clim 23:3933–3952CrossRef
    Barnston AG, Tippett MK, L’Heureux ML, Li S, DeWitt DG (2011) Skill of real-time seasonal ENSO model predictions during 2002–11: is our capability increasing? Bull Am Meteorol Soc 93(5):631–651. doi:10.​1175/​BAMS-D-11-00111.​1 CrossRef
    Battisti DS, Hirst AC (1989) Interannual variability in the tropical atmosphere-ocean model: influence of the basic state, ocean geometry and nonlineary. J Atmos Sci 45:1687–1712CrossRef
    Barsugli JJ, Sardeshmukh PD (2002) Global atmospheric sensitivity to tropical SST anomalies throughout the Indo-Pacific basin. J Clim 15(23):3427–3442CrossRef
    Bollasina MA, Ming Y (2013) The general circulation model precipitation bias over the southwestern equatorial Indian Ocean and its implications for simulating the South Asian monsoon. Clim Dyn. doi:10.​1007/​s00382-012-1347-7
    Boulanger J-P, Menkes C (2001) The TRIDENT Pacific model: II. The thermodynamical model and the role of long equatorial wave reflection during the 1993–1998 TOPEX/POSEIDON period. Clim Dyn 17:175–186CrossRef
    Boulanger J-P, Menkes C, Lengaigne M (2004) Role of high- and low-frequency winds and wave reflection in the onset, growth and termination of the 1997–1998 El Niño. Clim Dyn 22(2–3):267–280CrossRef
    Burgers G (2005) The simplest ENSO recharge oscillator. Geophys Res Lett 32(13):L13706. doi:10.​1029/​2005GL022951 CrossRef
    Burgers G, van Oldenborgh GJ (2003) On the impact of local feedbacks in the central Pacific on the ENSO cycle. J Clim 16:2356CrossRef
    Cane MA, Moore DW (1981) A note on low-frequency equatorial basin modes. J Phys Oceanogr 11:1578–1584CrossRef
    Chen D, Zebiak SE, Busalacchi AJ, Cane MA (1995) An improved procedure for El Niño forecasting. Science 269:1699–1702CrossRef
    Clarke AJ (1991) On the reflection and transmission of low-frequency energy at the irregular western Pacific Ocean boundary. J Geophys Res 96:3289–3305CrossRef
    Clarke AJ (2014) El Niño physics and El Niño predictability. Annu Rev Mar Sci 6(1):79–99. doi:10.​1146/​annurev-marine-010213-135026 CrossRef
    Clarke AJ, Van Gorder S (2003) Improving El Niño prediction using a space-time integration of Indo-Pacific winds and equatorial Pacific upper ocean heat content. Geophys Res Lett 30(7):1399. doi:10.​1029/​2002GL016673 CrossRef
    Dayan H, Vialard J, Izumo T, Lengaigne M (2014a) Does sea surface temperature outside the tropical Pacific contribute to enhanced ENSO predictability? Clim Dyn. doi:10.​1007/​s00382-013-1946-y
    Dayan H, Izumo T, Vialard J, Lengaigne M, Masson S (2014b) Do regions outside the tropical Pacific influence ENSO through atmospheric teleconnections? Clim Dyn. doi:10.​1007/​s00382-014-2254-x
    Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.​1002/​qj.​828 CrossRef
    Du Y, Xie S-P, Huang G, Hu K (2009) Role of air–sea interaction in the long persistence of El Niño-induced North Indian Ocean Warming*. J Clim 22:2023–2038CrossRef
    Florenchie P, Perigaud C (2002) Role of the western Pacific Ocean boundary conditions during 1980–1998 in the El Niño-Southern Oscillation events simulated by a coupled ocean-atmosphere model. J Geophys Res 107(C1):3002. doi:10.​1029/​2000JC000615 CrossRef
    Frauen C, Dommenget D (2012) Influences of the tropical Indian and Atlantic Oceans on the predictability of ENSO. Geophys Res Lett 39:L02706. doi:10.​1029/​2011GL050520 CrossRef
    Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106:447–462CrossRef
    Han W (2005) Origins and dynamics of the 90-day and 30–60-day variations in the equatorial Indian Ocean. J Phys Oceanogr 35:708–728CrossRef
    Hendon H (2003) Indonesian rainfall variability: impacts of ENSO and local air–sea interaction. J Clim 16:1775CrossRef
    Izumo T, de Boyer Montegut C, Luo J-J, Behera SK, Masson S, Yamagata T (2008) The role of the western Arabian Sea upwelling in Indian monsoon rainfall variability. J Clim 21:5603–5623CrossRef
    Izumo T, Vialard J, Lengaigne M, de Boyer Montegut C, Behera SK, Luo JJ, Cravatte S, Masson S, Yamagata T (2010) Influence of the state of the Indian Ocean Dipole on the following year’s El Niño. Nat Geosci 3:168–172. doi:10.​1038/​ngeo760 CrossRef
    Izumo T, Lengaigne M, Vialard J, Luo J-J, Yamagata T, Madec G (2014) Influence of Indian Ocean Dipole and Pacific recharge on following year’s El Niño: interdecadal robustness. Clim Dyn 42(1–2):291–310CrossRef
    Jansen MF, Dommenget D, Keenlyside N (2009) Tropical atmosphere–ocean interactions in a conceptual framework. J Clim 22:550–567CrossRef
    Jourdain N, Lengaigne M, Vialard J, Izumo T, SenGupta A (2015) Further insights on the influence of the Indian Ocean Dipole on following year’s El Niño-Southern Oscillation in observations and CMIP5 models. J Clim (submitted)
    Klein SA, Soden BJ, Lau N-C (1999) Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J Clim 12:917–932CrossRef
    Kug J-S, Kang I-S (2006) Interactive feedback between the Indian Ocean and ENSO. J Clim 19:1784–1801CrossRef
    Lagerloef GSE, Mitchum G, Lukas R, Niiler P (1999) Tropical Pacific near-surface currents estimated from altimeter, wind and drifter data. J Geophys Res 104:23313–23326CrossRef
    Lengaigne M, Boulanger J-P, Menkes C, Delecluse P, Slingo J (2004) Westerly wind events in the tropical Pacific and their influence on the coupled ocean-atmosphere system: a review. In: Earth climate: the ocean-atmosphere interaction, Geophys. Monogr. Ser., 147. AGU, Washington, DC, pp 49–69
    Lengaigne M, Boulanger J-P, Menkes C, Spencer H (2006) Influence of the seasonal cycle on the termination of El Niño events in a coupled general circulation model. J Clim 19(9):1850–1868. doi:10.​1175/​JCLI3706.​1 CrossRef
    Lloyd J, Guilyardi E, Weller H (2010) The role of atmosphere feedbacks during ENSO in the CMIP3 models. Part II: using AMIP runs to understand the heat flux feedback mechanisms. Clim Dyn 37:1271–1292CrossRef
    Luo J-J, Zhang R, Behera S, Masumoto Y, Jin F-F, Lukas R, Yamagata T (2010) Interaction between El Niño and extreme Indian Ocean Dipole. J Clim 23:726–742CrossRef
    McCreary JP (1980) Modelling wind-driven ocean circulation. JIMAR 80-0029, HIG 80-3, Univ. of Hawaii, Honolulu, p. 64
    McCreary JP Jr (1981) A linear stratified ocean model of the equatorial undercurrent. Philos Trans R Soc Lond 298A:603–635CrossRef
    McCreary JP, Miyama T, Furue R, Jensen T, Kang H-W, Bang B, Qu T (2007) Interactions between the Indonesian Throughflow and circulations in the Indian and Pacific Oceans. Prog Oceanogr 75(1):70–114CrossRef
    McGregor S, Holbrook NJ, Power SB (2009) The response of a stochastically forced ENSO model to observed off-equatorial wind-stress forcing. J Clim 22:2512–2525CrossRef
    McPhaden MJ, Busalacchi AJ, Cheney R, Donguy JR, Gage KS, Halpern D, Ji M, Julian P, Mayers G, Mitchum GT, Niiler PP, Picaut J, Reynolds RW, Smith N, Takeuchi K (1998) The Tropical Ocean-Global Atmosphere (TOGA) observing system: a decade of progress. J Geophys Res 103:14169–14240CrossRef
    McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in earth science. Science 314(5806):1740–1745. doi:10.​1126/​science.​1132588 CrossRef
    Meehl GA, Arblaster JM, Loschnigg J (2003) Coupled ocean-atmosphere dynamical processes in the tropical Indian and Pacific Ocean regions and the TBO. J Clim 16:2138–2158CrossRef
    Meinen CS, McPhaden MJ (2000) Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Nina. J Clim 13:3551–3559CrossRef
    Moore DW, McCreary JP (1990) Excitation of intermediate frequency equatorial waves at a western ocean boundary: with application to observations from the Indian Ocean. J Geophys Res 95:5192–5231
    Murtugudde R, McCreary JP, Busalacchi AJ (2000) Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997–1998. J Geophys Res 105:3295–3306CrossRef
    Neelin JD (1991) The slow sea surface temperature mode and the fastwave limit: analytic theory for tropical interannual oscillations and experiments in a hybrid coupled models. J Atmos Sci 48:584–606CrossRef
    Ohba M (2013) Important factors for long-term change in ENSO transitivity. J Inter Clim 33:1495–1509CrossRef
    Ohba M, Ueda H (2005) Basin-wide warming in the equatorial Indian Ocean associated with El Niño. SOLA. doi:10.​2151/​sola
    Ohba M, Ueda H (2007) An impact of SST anomalies in the Indian Ocean in acceleration of the El Niño to La Nina transition. J Meteorol Soc Jpn 85:335–348CrossRef
    Ohba M, Ueda H (2009a) Role of nonlinear atmospheric response to SST on the asymmetric transition process of ENSO. J Clim 22:177–192CrossRef
    Ohba M, Ueda H (2009b) Seasonally different response of the Indian Ocean to the remote forcing of El Niño: linking the dynamics and thermodynamics. SOLA 5:176–179. doi:10.​2151/​sola.​2009-045 CrossRef
    Ohba M, Watanabe M (2012) Role of the Indo-Pacific interbasin coupling in predicting asymmetric ENSO transition and duration. J Clim 25(9):3321–3335CrossRef
    Ohba M, Nohara D, Ueda H (2010) Simulation of asymmetric ENSO transition in WCRP CMIP3 multimodel experiments. J Clim 23:6051–6067CrossRef
    Oppenheim AV, Willsky AS, Young IT (1983) Signals and systems. Prentice-Hall Inc, Englewood Cliffs, p 256
    Palmer TN, Mansfield DA (1984) Response of two atmospheric general circulation models to sea-surface temperature anomalies in the tropical East and West Pacific. Nature 310(5977):483CrossRef
    Perigaud C, Dewitte B (1996) El Niño–La Nina events simulated with Cane and Zebiak’s model and observed with satellite or in situ data. Part I: model data comparison. J Clim 9:66–84CrossRef
    Picaut J, Ioualalen M, Menkes C, Delcroix T, McPhaden MJ (1996) Mechanism of the zonal displacements of the Pacific warm pool: implications for ENSO. Science 274:1486–1489CrossRef
    Picaut J, Masia F, du Penhoat Y (1997) An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science 277:663–666CrossRef
    Prodhomme C, Terray P, Masson S, Izumo T, Tozuka T, Yamagata T (2013) Impacts of Indian Ocean SST biases on the Indian Monsoon as simulated in a global coupled model. Clim Dyn 42:271–290CrossRef
    Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi:10.​1029/​2002JD002670 CrossRef
    Reverdin G, Cadet D, Gutzler D (1986) Interannual displacements of convection and surface circulation over the equatorial Indian Ocean. Q J R Meteorol Soc 112:43–46CrossRef
    Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625CrossRef
    Roeckner E et al (2003) The atmospheric general circulation model ECHAM5. Part I: model description. Max Planck Institute for Meteorology Rep. 349, 127 pp
    Saji NH, Goswami BN, Viayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363
    Santoso A, England MH, Cai W (2012) Impact of Indo-Pacific feedback interactions on ENSO dynamics diagnosed using ensemble climate simulations. J Clim 25:7743–7763. doi:10.​1175/​JCLI-D-11-00287.​1 CrossRef
    Schopf PS, Suarez MJ (1988) Vacillations in a coupled ocean-atmosphere model. J Atmos Sci 45:549–566CrossRef
    Schott FA, Xie S-P, McCreary JP Jr (2009) Indian Ocean circulation and climate variability. Rev Geophys 47:RG1002. doi:10.​1029/​2007RG000245 CrossRef
    Schwarzkopf FU, Böning CW (2011) Contribution of Pacific wind stress to multidecadal variations in upper ocean heat content and sea level in the tropical south Indian Ocean. Geophys Res Lett 38:L12602. doi:10.​1029/​2011GL047651 CrossRef
    Shinoda T, Hendon HH, Alexander MA (2004a) Surface and subsurface dipole variability in the Indian Ocean and its relation to ENSO. Deep Sea Res I 51:619–635CrossRef
    Shinoda T, Alexander MA, Hendon HH (2004b) Remote response of the Indian Ocean to interannual SST variations in the tropical Pacific. J Clim 17:362–372CrossRef
    Shu L, Clarke AJ (2002) Using an Ocean model to examine ENSO dynamics. J Phys Oceanogr 32:903CrossRef
    Spencer H (2004) Role of the atmosphere in seasonal phase locking of El Niño. Geophys Res Lett 31:L24104. doi:10.​1029/​2004GL021619 CrossRef
    Suresh I, Vialard J, Lengaigne M, Han W, McCreary J, Durand F, Muraleedharan PM (2013) Origins of wind-driven intraseasonal sea level variations in the North Indian Ocean coastal waveguide. Geophys Res Lett. doi:10.​1002/​2013GL058312
    Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117(8):1779–1800CrossRef
    Trenberth KE, Branstator GW, Karoly D, Kumar A, Lau N-C, Ropelewski C (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res 103(C7):14291–14324. doi:10.​1029/​97JC01444 CrossRef
    Vialard J, Menkes C, Boulanger J-P, Delecluse P, Guilyardi E, McPhaden M (2001) A model study of the oceanic mechanisms affecting the equatorial SST during the 1997–98 El Niño. J Phys Oceanogr 31:1649–1675CrossRef
    Watanabe M, Jin F-F (2002) Role of Indian Ocean warming in the development of the Philippine Sea anticyclone during El Niño. Geophys Res Lett. doi:10.​1029/​2001GL014318
    Webster PJ, Moore AM, Loschnigg JP, Leben RR (1999) Coupled oceanic–atmospheric dynamics in the Indian Ocean during 1997–98. Nature 401:356–360CrossRef
    Wentz FJ, Gentemann C, Smith D, Chelton D (2000) Satellite measurements of sea-surface temperature through clouds. Science 288:847–850CrossRef
    Xie S-P, Hu K, Hafner J et al (2009) Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño. J Clim 22:730–747CrossRef
    Yamanaka G, Yasuda T, Fujii Y, Matsumoto S (2009) Rapid termination of the 2006 El Niño and its relation to the Indian Ocean. Geophys Res Lett 36:L07702. doi:10.​1029/​2009GL037298 CrossRef
    Yuan DL et al (2011) Forcing of the Indian Ocean dipole on the interannual variations of the tropical Pacific Ocean: roles of the Indonesian throughflow. J Clim 15:3597–3608
    Zebiak SE, Cane MA (1987) A model El Niño-Southern Oscillation. Mon Weather Rev 115:2262–2278CrossRef
    Zhao Y, Nigam S (2015) The Indian Ocean Dipole: a Monopole in SST. J Clim 28:3–19CrossRef
  • 作者单位:T. Izumo (1) (4)
    J. Vialard (1)
    H. Dayan (1)
    M. Lengaigne (1) (2)
    I. Suresh (3)

    1. LOCEAN, IPSL, Sorbonne Universités (UPMC, Univ Paris 06)-CNRS-IRD-MNHN, Paris, France
    4. LOCEAN - Case 100, Université P. et M. Curie, 4, Place Jussieu, 75252, Paris Cedex 05, France
    2. Indo-French Cell for Water Sciences, IISc-NIO-IITM-IRD Joint International Laboratory, NIO, Dona Paula, India
    3. CSIR-National Institute of Oceanography (NIO), Goa, India
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geophysics and Geodesy
    Meteorology and Climatology
    Oceanography
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0894
文摘
Sea Surface Temperature (SST) anomalies that develop in spring in the central Pacific are crucial to the El Niño Southern Oscillation (ENSO) development. Here we use a linear, continuously stratified, ocean model, and its impulse response to a typical ENSO wind pattern, to derive a simple equation that relates those SST anomalies to the low frequency evolution of zonal wind stress anomalies τ x over the preceding months. We show that SST anomalies can be approximated as a “causal” filter of τ x , τ x (t − t 1) − c τ x (t − t 2), where t1 is ~1–2 months, t2 − t1 is ~6 months and c ranges between 0 and 1 depending on τ x location (i.e. SST anomalies are approximately proportional to the wind stress anomalies 1–2 months earlier minus a fraction of the wind stress anomalies 7–8 months earlier). The first term represents the fast oceanic response, while the second one represents the delayed negative feedback associated with wave reflection at both boundaries. This simple approach is then applied to assess the relative influence of the Indian Ocean Dipole (IOD) and of the Indian Ocean Basin-wide warming/cooling (IOB) in favouring the phase transition of ENSO. In agreement with previous studies, Atmospheric General Circulation Model experiments indicate that the equatorial Pacific wind responses to the IOD eastern and (IOB-related) western poles tend to cancel out during autumn. The abrupt demise of the IOD eastern pole thus favours an abrupt development of the IOB-cooling-forced westerly wind anomalies in the western Pacific in winter–spring (vice versa for an IOB warming). As expected from the simple SST equation above, the faster wind change fostered by the IOD enhances the central Pacific SST response as compared to the sole IOB influence. The IOD thereby enhances the IOB tendency to favour ENSO phase transition. As the IOD is more independent of ENSO than the IOB, this external influence could contribute to enhanced ENSO predictability.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700