用户名: 密码: 验证码:
Deterministic generations of quantum state with no more than six qubits
详细信息    查看全文
  • 作者:Ming-Xing Luo (1) (2) (3)
    Song-Ya Ma (4)
    Yun Deng (5)
    Xiaojun Wang (6)

    1. Information Security and National Computing Grid Laboratory
    ; Southwest Jiaotong University ; Chengdu ; 610031 ; China
    2. State key Laboratory of Networking and Switching Technology (Beijing University of Posts and Telecommunications)
    ; Beijing ; 100876 ; China
    3. State Key Laboratory of Information Security
    ; Institute of Information Engineering ; Chinese Academy of Sciences ; Beijing ; 100093 ; China
    4. School of Mathematics and Statistics
    ; Henan University ; Kaifeng ; 475004 ; China
    5. Institute of Computer Science
    ; Sichuan University of Science Engineering ; Zigong ; 64300 ; China
    6. School of Electronic Engineering
    ; Dublin City University ; Dublin 9 ; Ireland
  • 关键词:Quantum state ; Quantum generation circuit ; Cartan KAK decomposition
  • 刊名:Quantum Information Processing
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:14
  • 期:3
  • 页码:901-920
  • 全文大小:505 KB
  • 参考文献:1. Paige, C.C., Wei, M.: History and generality of the CS decomposition. Linear Algebra Appl. 208(209), 303鈥?26 (1994)
    2. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995) CrossRef
    3. Vidal, G., Dawson, C.M.: Universal quantum circuit for two-qubit transformations with three controlled-NOT gates. Phys. Rev. A 69, 010301 (2004) CrossRef
    4. Shende, V., Markov, I., Bullock, S.: Minimal universal two-qubit controlled-NOT-based circuits. Phys. Rev. A 69, 062321 (2004) CrossRef
    5. Shende, V., Bullock, S.S., Markov, I.L.: Synthesis of quantum-logic circuits. IEEE Trans. Comput. AID Des. 26, 1000鈥?010 (2006) CrossRef
    6. Nielsen, M.A., Dowling, M.R., Gu, M., Doherty, A.C.: Quantum computation as geometry. Science 311, 1133 (2006) CrossRef
    7. Brennen, G.K., O鈥橪eary, D.P., Bullock, S.S.: Criteria for exact qudit universality. Phys. Rev. A 71, 052318 (2005) CrossRef
    8. Li, B., Yu, Z.-H., Fei, S.-M.: Geometry of quantum computation with qutrits. Sci. Rep. 3, 2594 (2013)
    9. Luo, M.X., Wang, X.: Universal quantum computation with qudits. Sci. China Phys. Mech. Astron. 57, 1712鈥?717 (2014) CrossRef
    10. Luo, M.-X., Chen, X.-B., Yang, Y.-X., Wang, X.: Geometry of quantum computation with qudits. Sci. Rep. 4, 4044 (2014)
    11. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484鈥?509 (1997) CrossRef
    12. Bimbard, W., Jain, N., MacRae, A., Lvovsky, A.I.: Quantum-optical state engineering up to the two-photon level. Nat. Photonics 4, 243鈥?47 (2010) CrossRef
    13. Kiesel, N., Schmid, C., Weber, U., Ursin, R., Weinfurter, H.: Linear optics controlled-phase gate made simple. Phys. Rev. Lett. 95, 210505 (2005) CrossRef
    14. Xiao, Y.F., Zou, X.B., Han, Z.F., Guo, G.C.: Quantum phase gate in an optical cavity with atomic cloud. Phys. Rev. A 74, 044303 (2006) CrossRef
    15. Song, J., Xia, Y., Song, H.-S., Guo, J.-L., Nie, J.: Quantum computation and entangled-state generation through adiabatic evolution in two distant cavities. EPL 80, 60001 (2007) CrossRef
    16. VanMeter, N.M., Lougovski, P., Uskov, D.B., Kieling, K., Eisert, J., Dowling, J.P.: General linear-optical quantum state generation scheme: applications to maximally path-entangled states. Phys. Rev. A 76, 063808 (2007) CrossRef
    17. Hofheinz, M., Weig, E.M., Ansmann, M., Bialczak, R.C., Lucero, E., Neeley, M., O鈥機onnell, A.D., Wang, H., Martinis, J.M., Cleland, A.N.: Generation of Fock states in a superconducting quantum circuit. Nature 454, 310鈥?14 (2008) CrossRef
    18. Lu, C.-Y., Zhou, X.-Q., Guhne, O., Gao, W.B., Zhang, J., Yuan, Z.S., Goebel, A., Yang, T., Pan, J.-W.: Experimental entanglement of six photons in graph states. Nat. Phys. 3, 91鈥?5 (2007) CrossRef
    19. Gao, W.-B., Lu, C.-Y., Yao, X.-C., Xu, P., Guhne, O., Goebel, A., Chen, Y.A., Peng, C.Z., Chen, Z.B., Pan, J.-W.: Experimental demonstration of a hyper-entangled ten-qubit Schrodinger cat state. Nat. Phys. 6, 331鈥?35 (2010) CrossRef
    20. Wagenknecht, C., Li, C.M., Reingruber, A., Bao, X.H., Goebel, A., Chen, Y.A., Zhang, Q., Chen, K., Pan, J.-W.: Experimental demonstration of a heralded entanglement source. Nat. Photonics 4, 549鈥?52 (2010) CrossRef
    21. Roos, C.F., Riebe, M., Hoffner, H., Honsel, W., Benhelm, J., Lancaster, G.P.T., Becher, C., Schmidt-Kaler, F., Blatt, R.: Control and measurement of three-qubit entangled states. Science 304, 1478鈥?480 (2004) CrossRef
    22. Yu, C.S., Yi, X.X., Song, H.S., Mei, D.: Robust preparation of Greenberger-Horne-Zeilinger and W states of three distant atoms. Phys. Rev. A 75, 044301 (2007) CrossRef
    23. DiCarlo, L., Reed, M.D., Sun, L., Johnson, B.R., Chow, J.M., Gambetta, J.M., Frunzio, L., Girvin, S.M., Devoret, M.H., Schoelkopf, R.J.: Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature 467, 574鈥?78 (2010) CrossRef
    24. Neeley, M., Bialczak, R.C., Lenander, M., Lucero, E., Mariantoni, M., O鈥機onnell, A.D., Sank, D., Wang, H., Weides, M., Wenner, J., Yin, Y., Yamamoto, T., Cleland, A.N., Martinis, J.M.: Generation of three-qubit entangled states using superconducting phase qubits. Nature 467, 570鈥?73 (2010) CrossRef
    25. Plesch, M., Brukner, C.: Quantum state preparation with universal gate decompositions. Phys. Rev. A 83, 032302 (2011) CrossRef
    26. Luo, M.-X., Chen, X.-B., Yang, Y.-X., Niu, X.-X.: Experiment architecture of joint remote state preparation. Quantum Inf. Proc. 11, 751鈥?67 (2012) CrossRef
    27. Cartan, E.: Sur certaines formes riemanniennes remarquables des geometriesa groupe fondamental simple. Ann. Sci. Ec. Norm. Super. 44, 345 (1927)
    28. Khaneja, N., Glaser, S.: Cartan decomposition of \(SU(n)\) and control of spin systems. Chem. Phys. 267, 11鈥?3 (2001) CrossRef
    29. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)
    30. Luo, M.-X., Chen, X.-B., Ma, S.-Y., Niu, X.-X., Yang, Y.-X.: Joint remote preparation of an arbitrary three-qubit state. Opt. Commun. 83, 4796鈥?801 (2010) CrossRef
    31. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
    32. Cernoch, A., Soubusta, J., Bartukova, L., Dusek, M., Fiurasek, J.: Experimental realization of linear-optical partial swap gates. Phys. Rev. Lett. 100, 180501 (2008) CrossRef
    33. Lanyon, B.P., Barbieri, M., Almeida, M.P., Jennewein, T., Ralph, T.C., Resch, K.J., Pryde, G.J., O鈥橞rien, J.L., Gilchrist, A., White, A.G.: Simplifying quantum logic using higher-dimensional Hilbert spaces. Nat. Phys. 5, 134鈥?40 (2009) CrossRef
    34. Monz, T., Kim, K., Hensel, W., Riebe, M., Villar, A.S., Schindler, P., Chwalla, M., Hennrich, M., Blatt, R.: Realization of the quantum Toffoli gate with trapped Ions. Phys. Rev. Lett. 102, 040501 (2009) CrossRef
    35. Fedorov, A., Steffen, L., Baur, M., da Silva, M.P., Wallraff, A.: Implementation of a Toffoli gate with superconducting circuits. Nature 481, 170鈥?72 (2012) CrossRef
    36. Zheng, S.B.: Simplified construction and physical realization of n-qubit controlled phase gates. Phys. Rev. A 86, 012326 (2012) CrossRef
    37. Liu, J.-M., Feng, X.-L., Oh, C.H.: Remote preparation of arbitrary two- and three-qubit states. EPL 87, 30006 (2009) CrossRef
    38. Zhan, Y.-B.: Deterministic remote preparation of arbitrary two- and three-qubit states. EPL 98, 40005 (2012) CrossRef
    39. M枚tt枚en, M., Vartiainen, J.J., Bergholm, V., Salomaa, M.M.: Quantum circuits for general multiqubit gates. Phys. Rev. Lett. 93, 130502 (2004) CrossRef
    40. Saeedi, M., Arabzadeh, M., Zamani, M. S., Sedighi, M.: Block-based quantum-logic synthesis, arXiv:1011.2159 (2010)
    41. M枚tt枚en, M., Vartiainen, J.J., Bergholm, V., Salomaa, M.M.: Transformation of quantum states using uniformly controlled rotations. Quant. Inf. Comput. 5, 467 (2005)
    42. Vartiainen, J., M枚tt枚en, M., Salomaa, M.M.: Efficient decomposition of quantum gates. Phys. Rev. Lett. 92, 177902 (2004) CrossRef
    43. Wille, R., Saeedi, M., Drechsler, R.: Synthesis of Reversible Functions Beyond Gate Count and Quantum Cost. International Workshop on Logic Synthesis (IWLS), San Francisco (2009)
    44. Bullock, S.S., O鈥橪eary, D.P., Brennen, G.K.: Asymptotically optimal quantum circuits for \(d\) -level systems. Phys. Rev. Lett. 94, 230502 (2005) CrossRef
    45. Hladk媒, B., Drobn媒, G., Bu啪k, V.: Quantum synthesis of arbitrary unitary operators. Phys. Rev. A 61, 022102 (2000) CrossRef
    46. Grover, L.K.: Synthesis of quantum superpositions by quantum computation. Phys. Rev. Lett. 85, 1334 (2000) CrossRef
    47. Zhang, J., Lu, Z., Shan, L., Deng, Z.: Synthesizing NMR analogs of Einstein-Podolsky-Rosen states using the generalized Grover鈥檚 algorithm. Phys. Rev. A 66, 044308 (2002) CrossRef
    48. Shapira, D., Shimoni, Y., Biham, O.: Algebraic analysis of quantum search with pure and mixed states. Phys. Rev. A 71, 042320 (2005) CrossRef
    49. Hayato, G., Kouichi, I.: Multiqubit controlled unitary gate by adiabatic passage with an optical cavity. Phys. Rev. A 70, 012305 (2004) CrossRef
    50. Lin, X.-M., Zhou, Z.-W., Ye, M.-Y., Xiao, Y.-F., Guo, G.-C.: One-step implementation of a multiqubit controlled-phase-flip gate. Phys. Rev. A 73, 012323 (2006) CrossRef
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Physics
    Mathematics
    Engineering, general
    Computer Science, general
    Characterization and Evaluation Materials
  • 出版者:Springer Netherlands
  • ISSN:1573-1332
文摘
The ability to prepare arbitrary quantum state is the holy grail of quantum information technology. Previous schemes focus on circuit complexity using implicit decomposition schemes for global evolutions and are difficult in quantum experiments because the generation circuit can be completed for given coefficients each time. One protocol is firstly proposed in this paper in order to deterministically generate arbitrary four-qubit states with any coefficients. In order to complete this scheme with present physical techniques, we present an explicit quantum circuit with unknown coefficients of prepared states using elementary quantum gates. The key of our scheme is constructing the Cartan KAK decomposition of special transformations in \(SO(4)\) and \(SO(8)\) . And then, this protocol is extended to arbitrary five-qubit states and six-qubit states.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700