用户名: 密码: 验证码:
Space-based aperture array for ultra-long wavelength radio astronomy
详细信息    查看全文
  • 作者:Raj Thilak Rajan ; Albert-Jan Boonstra ; Mark Bentum…
  • 关键词:Radio astronomy ; Ultra ; long wavelength ; Interferometry ; Feasibility study ; System design
  • 刊名:Experimental Astronomy
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:41
  • 期:1-2
  • 页码:271-306
  • 全文大小:4,335 KB
  • 参考文献:1.Airbus Defense and Space: Quartz crystal oscillators OCXO-F. Technical report, Airbus Defense and Space. http://​www.​space-airbusds.​com/​en/​equipment/​quartz-crystal-oscillators-ocxo-f.​html (2012)
    2.Airbus Defense and Space: Quartz crystal oscillators OCXO-H. Technical report, Airbus Defense and Space. http://​www.​space-airbusds.​com/​en/​equipment/​quartz-crystal-oscillators-ocxo-h.​html (2015)
    3.Alexander, J., Kaiser, M., Novaco, J., Grena, F., Weber, R.: Scientific instrumentation of the Radio-Astronomy-Explorer-2 satellite. NASA STI/Recon Tech. Rep. N 75, 18284 (1974)ADS
    4.Altunin, V.: Protecting Space-Based Radio Astronomy. In: Cohen, R.J., Sullivan, W.T. (eds.) Preserving the astronomical sky, vol. 196 of IAU symposium, p 324 (2001)
    5.Aminaei, A., Wolt, M.K., Chen, L., Bronzwaer, T., Pourshaghaghi, H.R., Bentum, M.J., Falcke, H.: Basic radio interferometry for future lunar missions. In: IEEE Aerospace Conference, pp. 1–19. IEEE (2014)
    6.Arts, M., van der Wal, E., Boonstra, A.-J.: Antenna concepts for a space-based low-frequency radio telescope. In: ESA Antenna Workshop on Antennas for Space Applications, Noordwijk, pp. 5–8 (2010)
    7.Baan, W.: SURO-LC: A space-based ultra-long wavelength radio observatory. In: Proceedings of the meeting from Antikythera to the Square Kilometre Array: Lessons from the Ancients (Antikythera & SKA). Kerastari, Greece,vol. 1, p. 45, 12–15 June 2012
    8.Barnes, J.A., Chi, A.R., Cutler, L.S., Healey, D.J., Leeson, D.B., McGunigal, T.E., Mullen, J.A., Smith, W.L., Sydnor, R.L., Vessot, R.F.C., Winkler, G.M.R.: Characterization of frequency stability. IEEE Trans. Instrum. Meas. IM-20(2), 105–120 (1971)CrossRef
    9.Basart, J., Burns, J., Dennison, B., Weiler, K., Kassim, N., Castillo, S., McCune, B.: Directions for space-based low frequency radio astronomy: 1. System considerations. Radio Sci. 32(1), 251–263 (1997)CrossRef ADS
    10.Basart, J., Burns, J., Dennison, B., Weiler, K., Kassim, N., Castillo, S., McCune, B.: Directions for space-based low-frequency radio astronomy: 2. Telescopes. Radio Sci. 32(1), 265–275 (1997)CrossRef ADS
    11.Bentum, M., Verhoeven, C., Boonstra, A.-J., van der Veen, A.-J., Gill, E.: A novel astronomical application for formation flying small satellites. In: 60th International Astronautical Congress: IAC 2009, 12–16 October 2009, Daejeon, Republic of Korea. http://​doc.​utwente.​nl/​68514 (2009)
    12.Bergman, J.E.S., Blott, R.J., Forbes, A.B., Humphreys, D.A., Robinson, D.W., Stavrinidis, C.: FIRST Explorer – An innovative low-cost passive formation-flying system (2009). arXiv:0911.​0991
    13.Bik, J., Visser, P., Jennrich, O.: LISA satellite formation control. Adv. Space Res. 40(1), 25–34 (2007)CrossRef ADS
    14.Boonstra, A.-J., Bentum, M., Rajan, R.T., Wijnholds, S.J., van Cappellen, W., Saks, N., Falcke, H., Klein-Wolt, M.: DARIS: Distributed aperture array for radio astronomy in space. Technical Report 08, ASTRON, Dwingeloo (2011)
    15.Boonstra, A.-J., Saks, N., Bentum, M., van’t Klooster, K., Falcke, H.: DARIS, A low-frequency distributed aperture array for radio astronomy in space. In: 61st International Astronautical Congress. IAC, IAC (2010)
    16.Borg, I., Groenen, P.J.F.: Modern Multidimensional Scaling: Theory and Applications (Springer Series in Statistics) Springer, 2nd edition (2005)
    17.Budianu, A., Castro, T.J.W., Meijerink, A., Bentum, M.: Inter-satellite links for cubesats. In: IEEE Aerospace Conference, pp. 1–10 (2013)
    18.Budianu, A., Meijerink, A., Bentum, M.: Swarm-to-earth communication in OLFAR. Acta Astronaut 107(0), 14–19 (2015)CrossRef ADS
    19.Budianu, A., Rajan, R.T., Engelen, S., Meijerink, A., Verhoeven, C., Bentum, M.: OLFAR: Adaptive topology for satellite swarms. In: International Astronautical Congress, pp. 3–7, Cape Town (2011)
    20.Bunton, J.: SKA correlator advances. Exp. Astron. 17, 251–259 (2004)CrossRef ADS
    21.Burke, B.F.: Astrophysics from the moon. Science 250(4986), 1365–1370 (1990)CrossRef ADS
    22.Burns, J.: The lunar observer radio astronomy experiment (LORAE), pp. 19–28. Low frequency astrophysics from space (1990)
    23.Burns, J.O., Duric, N., Taylor, G.J., Johnson, S.W.: Observatories on the moon. Sci. Am. 262, 42–49 (1990)CrossRef ADS
    24.Burns, J.O., Lazio, J., Bale, S., Bowman, J., Bradley, R., Carilli, C., Furlanetto, S., Harker, G., Loeb, A., Pritchard, J.: Probing the first stars and black holes in the early universe with the dark ages radio explorer (DARE). Adv. Space Res. 49(3), 433–450 (2012)CrossRef ADS
    25.Cohen, A.: Estimates of the classical confusion limit for the LWA. Long Wavelength Array Memo Series, vol. 17, p 20375. Naval Research Laboratory, Washington (2004)
    26.Droz, F., Barmaverain, G., Wang, Q., Rochat, P., Emma, F., Waller, P.: Galileo rubidium standard - lifetime data and GIOVE-A related telemetries. In: 21st European Frequency and Time Forum, pp. 1122–1126. IEEE (2007)
    27.Ellingson, S.W., Clarke, T.E., Cohen, A., Craig, J., Kassim, N.E., Pihlstrom, Y., Rickard, L.J., Taylor, G.B.: The long wavelength array. IEEE Proc 97(8), 1421–1430 (2009)CrossRef ADS
    28.Engelen, S., Gill, E., Verhoeven, C.: On the reliability, availability, and throughput of satellite swarms. IEEE Trans. Aerosp. Electron. Syst. 50(2), 1027–1037 (2014)CrossRef ADS
    29.Gorgolewski, S.: The advantages of a lunar radio astronomy observatory. Astronaut. Acta New Ser. 11(2), 130–131 (1965)
    30.Goujon, D., Rochat, P., Mosset, P., Boving, D., Perri, A., Rochat, J., Ramanan, N., Simonet, D., Vernez, X., Froidevaux, S.: Development of the space active hydrogen maser for the aces mission. In: EFTF-2010 24th European frequency and time forum. IEEE, pp. 1–6 (2010)
    31.Gurvits, L.: Space radio astronomy in the next 1000001 (binary) years. In: Resolving the sky-radio interferometry: past, present and future, vol. 1, p 45 (2012)
    32.Hirabayashi, H., Hirosawa, H., Kobayashi, H., Murata, Y., Asaki, Y., Avruch, I.M., Edwards, P.G., Fomalont, E.B., Ichikawa, T., Kii, T.: The VLBI space observatory programme and the radio-astronomical satellite halca. Publ Astron Soc Jpn 52(6), 955–965 (2000)CrossRef ADS
    33.IEEE 2007: Part 15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (WPANs). Technical report, IEEE Working Group 802.15.4 (2007)
    34.Jester, S., Falcke, H.: Science with a lunar low-frequency array: From the dark ages of the Universe to nearby exoplanets. New Astron. Rev. 53, 1–26 (2009)CrossRef ADS
    35.Jones, D., Allen, R., Basart, J., Bastian, T., Blume, W., Bougeret, J.-L., Dennison, B., Desch, M., Dwarakanath, K., Erickson, W.: The alfa medium explorer mission. Adv. Space Res. 26(4), 743–746 (2000)CrossRef ADS
    36.Jones, D.L., Lazio, J., MacDowall, R., Weiler, K., Burns, J.: Towards a lunar epoch of reionization telescope. In: Bulletin of the American Astronomical Society, vol. 39, p. 196 (2007)
    37.Kaiser, M.L., Weiler, K.W.: The current status of low frequency radio astronomy from space. Geophys. Monogr. 119, 1–11 (2000)
    38.Kardashev, N., Khartov, V., Abramov, V., Avdeev, V.Y., Alakoz, A., Aleksandrov, Y.A., Ananthakrishnan, S., Andreyanov, V., Andrianov, A., Antonov, N.: RadioAstron-a telescope with a size of 300 000 km: Main parameters and first observational results. Astron. Rep. 57(3), 153–194 (2013)CrossRef ADS
    39.Kassim, N.E., Perley, R.A., Erickson, W.C., Dwarakanath, K.S.: Subarcminute resolution imaging of radio sources at 74 MHz with the Very Large Array. Astron. J. 106, 2218–2228 (1993)CrossRef ADS
    40.Kay, S.M.: Fundamentals of statistical signal processing: estimation theory. Prentice-Hall, Inc., NJ (1993)MATH
    41.Klein-Wolt, M., Aminaei, A., Zarka, P., Schrader, J.-R., Boonstra, A.-J., Falcke, H.: Radio astronomy with the european lunar lander: Opening up the last unexplored frequency regime. Planet. Space Sci. 74(1), 167–178 (2012). Scientific Preparations For Lunar ExplorationCrossRef ADS
    42.Klein-Wolt M., et al.: Dark ages explorer, DEX, a white paper for a low frequency radio interferometer mission to explore the cosmological dark ages for the L2. L3 ESA Cosmic Vision Program (2013)
    43.Kuiper, T., Jones, D.: Lunar surface arrays. Radio Astronomy at Long Wavelengths, pp.. 351–357 (2000)
    44.Linfield, R., Keihm, S., Teitelbaum, L., Walter, S., Mahoney, M., Treuhaft, R., Skjerve, L.: A test of water vapor radiometer-based troposphere calibration using very long baseline interferometry observations on a 21-km baseline. Radio Sci. 31(1), 129–146 (1996)CrossRef ADS
    45.Loeb, A., Zaldarriaga, M.: Measuring the small-scale power spectrum of cosmic density fluctuations through 21 cm tomography prior to the epoch of structure formation. Phys. Rev. Lett. 92(21), 211301 (2004)CrossRef ADS
    46.Lombardi, M.A., Nelson, L.M., Novick, A.N., Zhang, V.S.: Time and frequency measurements using the global positioning system. Cal Lab: International Journal of Metrology 8(3), 26–33 (2001)
    47.Lonsdale, C., et al.: The murchison widefield array: Design overview. Proc. IEEE 97(8), 1497–1506 (2009)CrossRef ADS
    48.Maccone, C.: NASA gateways at L1 and L2 and the radio-quiet moon farside imperative. In: Selected Proceedings of the 55th International Astronautical Federation Congress, Vancouver, Canada, 4-8 October 2004, vol. 57, pp. 145–155 (2005)
    49.Manning, R.: Instrumentation for space-based low frequency radio astronomy. Geophysical Monograph Series 119, 329–337 (2000)
    50.Markley, F.L., Crassidis, J.L.: Fundamentals of Spacecraft Attitude Determination and Control, vol. 33. Springer (2014)
    51.Microsemi: SA.45sCSAC- Chip Scale Atomic Clock datasheet. Technical report, Microsemi. http://​www.​microsemi.​com/​products/​timing-synchronization-systems/​embedded-timing-solutions/​components/​sa-45s-chip-scale-atomic-clock (2011)
    52.Naghshvar, M., Zhuang, H., Javidi, T.: A general class of throughput optimal routing policies in multi-hop wireless networks. IEEE Trans. Inf. Theory 58 (4), 2175–2193 (2012)CrossRef MathSciNet
    53.Nee, R. v., Prasad, R.: OFDM for wireless multimedia communications. Artech House, Inc (2000)
    54.Oberoi, D., Pinçon, J.-L.: A new design for a very low frequency spaceborne radio interferometer. Radio Sci. 40(4) (2005)
    55.Patwari, N., Ash, J., Kyperountas, S., Hero, A.O.I., Moses, R., Correal, N: Locating the nodes: Cooperative localization in wireless sensor networks. IEEE Signal Process. Mag. 22(4), 54–69 (2005)CrossRef ADS
    56.Quillien, K., Engelen, S., Gill, E., Smith, D., Arts, M., Boonsta, A.-J.: Astronomical antenna for a space based low frequency radio telescope. In: 27th Conference on Small Satellites, pp. 1–4 (2013)
    57.Rajan, R.T., Bentum, M., Boonstra, A.-J.: Synchronization for space based ultra low frequency interferometry, pp. 1–8 (2013)
    58.Rajan, R.T., Bentum, M., Gunst, A., Boonstra, A.-J.: Distributed correlators for interferometry in space. In: IEEE Aerospace Conference, pp. 1–9 (2013)
    59.Rajan, R.T., Engelen, S., Bentum, M., Verhoeven, C.: Orbiting Low Frequency Array for Radio astronomy. In: IEEE Aerospace Conference, pp.. 1 –11 (2011)
    60.Rajan, R.T., Leus, G., van der Veen, A.-J.: Joint relative position and velocity estimation for an anchorless network of mobile nodes. Signal Process. 115 (0), 66–78 (2015)CrossRef
    61.Rajan, R.T., van der Veen, A.-J.: Joint ranging and synchronization for an anchorless network of mobile nodes. IEEE Trans. Signal Process. 63(8), 1925–1940 (2015)CrossRef ADS MathSciNet
    62.Rees, M.J.: The End of the ‘Dark Age’. In: Holt, S., Smith, E. (eds.) After the Dark Ages: When Galaxies were Young (the Universe at 2<z<5), volume 470 of American Institute of Physics Conference Series, pages 13–23. AIP Publishing (1999)
    63.Saks, N., Boonstra, A.-J., Rajan, R.T., Bentum, M.J., Beilen, F., van’t Klooster, K.: DARIS, a fleet of passive formation flying small satellites for low frequency radio astronomy. In: The 4S Symposium (Small Satellites Systems & Services Symposium), Madeira, Portugal,(ESA and CNES conference), 31 May - 4 June 2010
    64.Serpedin, E., Chaudhari, Q.M.: Synchronization in Wireless Sensor Networks: Parameter Estimation, Peformance Benchmarks, and Protocols, 1st edition. Cambridge University Press, New York (2009)CrossRef
    65.Smith, D., Arts, M.: Characterization of astronomical antenna for space based low frequency radio telescope. In: IEEE Aerospace Conference, Big Sky, Montana US, 2-9 March 2013
    66.Smith, H.J.: Very low frequency radio astronomy from the moon. In: Low Frequency Astrophysics from Space, pp.. 29–33. Springer (1990)
    67.Sodnik, Z., Furch, B., Lutz, H.: Free-space laser communication activities in Europe: SILEX and beyond. In: 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS), pp. 78–79 (2006)
    68.Stanford: PRS10-rubidium frequency standard, Technical report, Stanford. http://​www.​leapsecond.​com/​museum/​prs10/​ (2006)
    69.Takahashi, Y.D.: A concept for a simple radio observatory at the lunar south pole. Adv. Space Res. 31(11), 2473–2478 (2003)CrossRef ADS
    70.Taylor, G.B., Carilli, C.L., Perley, R.A. (eds.): Synthesis Imaging in Radio Astronomy II, volume 180 of Astronomical Society of the Pacific Conference Series, Astronomical Society of the Pacific, San Francisco (1999)
    71.Thompson, A.R., Moran, J.M., Swenson Jr, G.W.: Interferometry and synthesis in radio astronomy. Wiley (2008)
    72.Toyoshima, M.: Trends in satellite communications and the role of optical free-space communications. J. Opt. Netw. 4(6), 300–311 (2005)CrossRef
    73.Ulvestad, J.S., Edwards, C.D., Linfield, R.P.: Very long baseline interferometry using a radio telescope in earth orbit. Technical Report 42–88, JPL (1986)
    74.van Haarlem, M. P., et al.: LOFAR: The LOw-Frequency ARray. Astron. Astrophys. 556, A2 (2013)CrossRef ADS
    75.Weber, R., Alexander, J., Stone, R.: The radio astronomy explorer satellite, a low-frequency observatory. Radio Sci. 6(12), 1085–1097 (1971)CrossRef ADS
    76.Weiler, K., Johnston, K., Simon, R., Dennison, B., Erickson, W., Kaiser, M., Cane, H., Desch, M.: A low frequency radio array for space. Astron. Astrophys. 195, 372–379 (1988)ADS
    77.Wijnholds, S.J., van der Tol, S., Nijboer, R., van der Veen, A.-J.: Calibration challenges for future radio telescopes. IEEE Signal Process. Mag. 27(1), 30–42 (2010)CrossRef ADS
    78.Woan, G.: A very low frequency radio telescope on the far side of the moon. In: Measuring the Size of Things in the Universe: HBT Interferometry and Heavy Ion Physics, vol. 1, p 347 (1999)
    79.Zarka, P., Bougeret, J.-L., Briand, C., Cecconi, B., Falcke, H., Girard, J., Griemeier, J.-M., Hess, S., Klein-Wolt, M., Konovalenko, A., Lamy, L., Mimoun, D., Aminaei, A: Planetary and exoplanetary low frequency radio observations from the moon. Planet. Space Sci. 74(1), 156–166 (2012). Scientific Preparations For Lunar ExplorationCrossRef ADS
  • 作者单位:Raj Thilak Rajan (1) (2)
    Albert-Jan Boonstra (1)
    Mark Bentum (1) (3)
    Marc Klein-Wolt (4)
    Frederik Belien (2) (5)
    Michel Arts (1)
    Noah Saks (5)
    Alle-Jan van der Veen (2)

    1. Research and Development, Netherlands Institute for Radio Astronomy (ASTRON), Dwingeloo, The Netherlands
    2. Research and Development, Technical University of Delft, Delft, The Netherlands
    3. Telecommunications Engineering, University of Twente, Enschede, The Netherlands
    4. Radboud University, Nijmegen, The Netherlands
    5. Airbus Defence, Space, Friedrichshafen, Germany
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Astronomy
    Statistics for Engineering, Physics, Computer Science, Chemistry and Geosciences
  • 出版者:Springer Netherlands
  • ISSN:1572-9508
文摘
The past decade has seen the advent of various radio astronomy arrays, particularly for low-frequency observations below 100 MHz. These developments have been primarily driven by interesting and fundamental scientific questions, such as studying the dark ages and epoch of re-ionization, by detecting the highly red-shifted 21 cm line emission. However, Earth-based radio astronomy observations at frequencies below 30 MHz are severely restricted due to man-made interference, ionospheric distortion and almost complete non-transparency of the ionosphere below 10 MHz. Therefore, this narrow spectral band remains possibly the last unexplored frequency range in radio astronomy. A straightforward solution to study the universe at these frequencies is to deploy a space-based antenna array far away from Earths’ ionosphere. In the past, such space-based radio astronomy studies were principally limited by technology and computing resources, however current processing and communication trends indicate otherwise. Furthermore, successful space-based missions which mapped the sky in this frequency regime, such as the lunar orbiter RAE-2, were restricted by very poor spatial resolution. Recently concluded studies, such as DARIS (Disturbuted Aperture Array for Radio Astronomy In Space) have shown the ready feasibility of a 9 satellite constellation using off the shelf components. The aim of this article is to discuss the current trends and technologies towards the feasibility of a space-based aperture array for astronomical observations in the Ultra-Long Wavelength (ULW) regime of greater than 10 m i.e., below 30 MHz. We briefly present the achievable science cases, and discuss the system design for selected scenarios such as extra-galactic surveys. An extensive discussion is presented on various sub-systems of the potential satellite array, such as radio astronomical antenna design, the on-board signal processing, communication architectures and joint space-time estimation of the satellite network. In light of a scalable array and to avert single point of failure, we propose both centralized and distributed solutions for the ULW space-based array. We highlight the benefits of various deployment locations and summarize the technological challenges for future space-based radio arrays. Keywords Radio astronomy Ultra-long wavelength Interferometry Feasibility study System design

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700