用户名: 密码: 验证码:
Urban scenarios modifications due to the earthquake: ruins formation criteria and interactions with pedestrians' evacuation
详细信息    查看全文
  • 作者:Enrico Quagliarini ; Gabriele Bernardini…
  • 关键词:Earthquake risk assessment ; Earthquake evacuation ; Human behaviours ; Multi ; agent model ; Simulation model ; Ruins generation
  • 刊名:Bulletin of Earthquake Engineering
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:14
  • 期:4
  • 页码:1071-1101
  • 全文大小:1,216 KB
  • 参考文献:Alexander D (1990) Behavior during earthquakes: a southern Italian example. Int J Mass Emerg Disasters 8:5–29
    Alexander D (2012) What can we do about earthquakes? Towards a systematic approach to seismic risk mitigation. In: Proceedings of the 2012 NZSEE conference. Paper #001. Christchurch, New Zealand
    Ambraseys N (1983) Evaluation of seismic risk. In: Proceedings of NATO advanced studies on seismicity and seismic risk of the North Sea. Reidel, Utrecht, pp 317–345
    An L (2012) Modeling human decisions in coupled human and natural systems: review of agent-based models. Ecol Model 229:25–36. doi:10.​1016/​j.​ecolmodel.​2011.​07.​010 CrossRef
    Ansal A, Kurtuluş A, Tönük G (2010) Seismic microzonation and earthquake damage scenarios for urban areas. Soil Dyn Earthq Eng 30:1319–1328. doi:10.​1016/​j.​soildyn.​2010.​06.​004 CrossRef
    Arnold C, Eisner R, Durkin M, Whitaker D (1982) Occupant behavior in a six-storey office building fallowing severe earthquake damage. Disasters 6:207–214CrossRef
    Baiocchi V, Dominici D, Ferlito R, Giannone F, Guarascio M, Zucconi M (2012a) Test of a building vulnerability model for L’Aquila earthquake. Appl Geomat 4:95–103. doi:10.​1007/​s12518-011-0065-x CrossRef
    Baiocchi V, Dominici D, Giannone F, Zucconi M (2012b) Rapid building damage assessment using EROS B data: the case study of L’Aquila earthquake. Ital J Remote Sens 44:153–165. doi:10.​5721/​ItJRS201244112 CrossRef
    Benedetti D, Petrini V (1984) On the vulnerability of masonry buildings: proposals of new evaluation methodologies (Sulla vulnerabilitá sismica di edifici in muratura: proposte di un metodo di valutazione) (in Italian). L’industria delle Construzioni 149:66–78
    Bernardini G, D’Orazio M, Quagliarini E, Spalazzi L (2014) An agent-based model for Earthquake Pedestrians’ evacuation simulation in urban scenarios. Transp Res Proc 2:255–263. doi:10.​1016/​j.​trpro.​2014.​09.​050 CrossRef
    Boileau AM, Cattarinussi B, Delli Zotti G, Pelanda C, Strassoldo R, Telia B (1978) Friuli: the earthquake proof (Friuli: la prova del terremoto) (in Italian). Franco Angeli, Milano
    Calvi GM, Pinho R, Magenes G, Bommer JJ, Crowley H (2006) Development of seismic vulnerability assessment methodologies over the past 30 years. ISET J Earthq Technol 43:75–104
    Campos Costa A, Sousa ML, Carvalho A, Coelho E (2009) Evaluation of seismic risk and mitigation strategies for the existing building stock: application of LNECloss to the metropolitan area of Lisbon. Bull Earthq Eng 8:119–134. doi:10.​1007/​s10518-009-9160-3 CrossRef
    Carreño ML, Cardona OD, Barbat AH (2011) New methodology for urban seismic risk assessment from a holistic perspective. Bull Earthq Eng 10:547–565. doi:10.​1007/​s10518-011-9302-2 CrossRef
    Carturan F, Pellegrino C, Rossi R, Gastaldi M, Modena C (2012) An integrated procedure for management of bridge networks in seismic areas. Bull Earthq Eng 11:543–559. doi:10.​1007/​s10518-012-9391-6 CrossRef
    Cattari S, Curti E, Giovinazzi S, Parodi S, Lagomarsino S, Penna A (2004) A model for vulnerabilty analysis of masonry building at urban scale (Un modello meccanico per l’ analisi di vulnerabilità del costruito in muratura a scala urbana) (in Italian). In: Proceedings of the XI national congress on seismic engineering in Italy (XI Convegno Nazionale “L’ingegneria sismica in Italia”). Genova, Italy
    Chen Q, Chen Y, Liu JIE, Chen L (1997) Quick and approximate estimation of earthquake loss based on macroscopic index of exposure and population distribution. Nat Hazards 15:217–229CrossRef
    Colombi M, Borzi B, Crowley H, Orida M, Meroni F, Pinho R (2008) Deriving vulnerability curves using Italian earthquake damage data. Bull Earthq Eng 6:485–504. doi:10.​1007/​s10518-008-9073-6 CrossRef
    Crowley H, Bommer JJ (2006) Modelling seismic hazard in earthquake loss models with spatially distributed exposure. Bull Earthq Eng 4:249–273. doi:10.​1007/​s10518-006-9009-y CrossRef
    Crowley H, Colombi M, Borzi B, Faravelli M, Onida M, Lopez M, Polli D, Meroni F, Pinho R (2008) A comparison of seismic risk maps for Italy. Bull Earthq Eng 7:149–180. doi:10.​1007/​s10518-008-9100-7 CrossRef
    D’Ayala DF, Paganoni S (2010) Assessment and analysis of damage in L’Aquila historic city centre after 6th April 2009. Bull Earthq Eng 9:81–104. doi:10.​1007/​s10518-010-9224-4 CrossRef
    D’Orazio M, Bernardini G (2014) An experimental study on the correlation between “attachment to belongings” “pre-movement” time. In: Weidmann U, Kirsch U, Schreckenberg M (eds) Pedestrian and evacuation dynamics 2012. Springer, Cham, pp 167–178CrossRef
    D’Orazio M, Quagliarini E, Bernardini G, Spalazzi L (2014a) EPES– Earthquake pedestrians’ evacuation simulator: a tool for predicting earthquake pedestrians’ evacuation in urban outdoor scenarios. Int J Disaster Risk Reduct 10:153–177. doi:10.​1016/​j.​ijdrr.​2014.​08.​002 CrossRef
    D’Orazio M, Spalazzi L, Quagliarini E, Bernardini G (2014b) Agent-based model for earthquake pedestrians' evacuation in urban outdoor scenarios: behavioural patterns definition and evacuation paths choice. Saf Sci 62:450–465. doi:10.​1016/​j.​ssci.​2013.​09.​014 CrossRef
    De Bruycker M, Greco D, Lechat MF et al (1985) The 1980 earthquake in Southern Italy—morbidity and mortality. Int J Epidemiol 14:113–117CrossRef
    Dilley M, Chen RS, Deichmann U et al (2005) Natural disaster hotspots: a global risk analysis. World Bank, WashingtonCrossRef
    Federal Emergency Management Agency (2009) HAZUS®-MH advanced engineering building module (AEBM). technical and user’s manual. FEMA, Washington
    Ferlito R, Pizza AG (2011) A seismic vulnerability model for urban scenarios. Quick method for the evaluation of roads vulnerability in case of emergency (Modello di vulnerabilità di un centro urbano. Metodologia per la valutazione speditiva della vulnerabilità della viabilità d’emergenza) (in Italian). Ing Sismica 4:31–43
    Giammarinaro MS, Alleti A, Azzara RM, Canoznieri V, Maiorana S, Rovelli A, Tertulliani A, Vallone P (2003) Natural hazard assessment through an oriented GIS. In: Geophysics research abstract vol. 5, 12961
    Giovinazzi S, Lagomarsino S (2001) A method for the vulnerability analysis of built-up areas. In: Proceeding of 10th Italian conference on earthquake engineering. Potenza-Matera, Italy
    Giovinazzi S, Lagomarsino S (2004) A macroseismic method for vulnerability assessment of buildings. In: Proceeding of the 13th World conference on earthquake engineering. Paper #896. Vancouver
    Goded T, Irizarry J, Buforn E (2011) Vulnerability and risk analysis of monuments in Málaga city’s historical centre (Southern Spain). Bull Earthq Eng 10:839–861. doi:10.​1007/​s10518-011-9321-z CrossRef
    Goretti A, Sarli V (2006) Road network and damaged buildings in Urban areas: short and long-term interaction. Bull Earthq Eng 4:159–175. doi:10.​1007/​s10518-006-9004-3 CrossRef
    Grimaz S, Meroni F, Petrini V, Tomassini R, Zonno G (1997) Rules of Friuli Earthquake datafor building vulnerability model (Il ruolo dei dati di danneggiamento del terremoto del Friuli nello studio dei modelli di vulnerabilità sismica degli edifici in muratura) (in Italian). In: Forum editore (ed) La scienza e i terremoti. Udine, pp 89–96
    Grünthal G (ed) (1998) European Macroseismic Scale 1998 (EMS-98). Luxembourg
    Hashemi M, Alesheikh A (2010) Developing an agent based simulation model for earthquakes in the context of SDI. In: Proceedings of the GSDI 12 conference. Singapore, Malaysia
    Helbing D, Bialetti S (2012) Agent-based modeling. In: Helbing D (ed) Social self-organization. Springer, Berlin, pp 25–70. doi:10.​1007/​978-3-642-24004-1
    Helbing D, Farkas JI, Molnar P, Vicsek T (2002) Simulation of pedestrian crowds in normal and evacuation situations. In: Pedestrian and evacuation dynamics. Berlin, pp 21–58
    Heliövaara S, Korhonen T, Hostikka S, Ehtamo H (2012) Counterflow model for agent-based simulation of crowd dynamics. Build Environ 48:89–100. doi:10.​1016/​j.​buildenv.​2011.​08.​020 CrossRef
    Hori M (2011) Introduction to computational earthquake engineering, 2nd edn. Imperial College Press, LondonCrossRef
    Husselmann AV, Hawick KA (2011) Spatial agent-based modelling and simulations: a review. CSTN Computational Science Technical Note, vol 153
    Inel M, Ozmen HB, Akyol E (2012) Observations on the building damages after 19 May 2011 Simav (Turkey) earthquake. Bull Earthq Eng 11:255–283. doi:10.​1007/​s10518-012-9414-3 CrossRef
    James W (1968) On some mental effects of the earthquake. Memories and studies. Greenwood Press, New York, pp 207–226
    Johnson NR, Feinberg WE, Johnston DM (1994) Microstructure and panic: the impact of social bonds on individual action in collective flight from the Beverly Hills Supper Club Fire. In: Tierney K, Dynes R (eds) Disasters, collective behaviour and social organization. University of Delaware Press, Newark-Delaware, pp 168–189
    Kanamori H (1977) The energy release in great earthquakes. J Geophys Res 82:2981–2987. doi:10.​1029/​JB082i020p02981 CrossRef
    Kappos AJ, Panagopoulos G, Penelis GG (2008) Development of a seismic damage and loss scenario for contemporary and historical buildings in Thessaloniki, Greece. Soil Dyn Earthq Eng 28:836–850. doi:10.​1016/​j.​soildyn.​2007.​10.​017 CrossRef
    Klügel J-U (2008) Seismic hazard analysis: quo vadis? Earth Sci Rev 88:1–32CrossRef
    Lagomarsino S, Giovinazzi S (2006) Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings. Bull Earthq Eng 4:415–443. doi:10.​1007/​s10518-006-9024-z CrossRef
    Lagomarsino S, Podestà S (2005) Vulnerability of monuments and buildings in Southern Italy (Inventario e vulnerabilità del patrimonio monumentale dei parchi dell’Italia centro-meridionale e meridionale, Vol.III—Analisi di vulnerabilità e rischio degli edifici monumentali) (in Italian). L’Aquila, Italy
    Lakoba TI, Kaup DJ, Finkelstein NM (2005) Modifications of the Helbing–Molnar–Farkas–Vicsek social force model for pedestrian evolution. Simulation 81:339–352. doi:10.​1177/​0037549705052772​ CrossRef
    Macal CM, North MJ (2010) Tutorial on agent-based modelling and simulation. J Simul 4:151–162. doi:10.​1057/​jos.​2010.​3 CrossRef
    Manenti LA, Manzoni SL (2011) Crystals of crowd: modelling pedestrian groups using MAS-based approach. In: Proceedings of the 12th workshop on objects and agents. Rende (CS), Italy, pp 51–57
    Mawson AR (2007) Mass panic and social attachment: the dynamics of human behavior. Ashgate, Brookfield
    Mouroux P, Le Brun B (2006a) Risk-UE project: an advanced approach to earthquake risk scenarios with application to different European towns. In: Sousa Oliveira C, Roca A, Goula W (eds), Geotechnical, geological and earthquake engineering, vol. 2, pp 479–508. doi: 10.​1007/​978-1-4020-3608-8_​23
    Mouroux P, Le Brun B (2006b) Presentation of RISK-UE project. Bull Earthq Eng 4:323–339. doi:10.​1007/​s10518-006-9020-3 CrossRef
    Musson RMW, Grünthal G, Stucchi M (2009) The comparison of macroseismic intensity scales. J Seismolog 14:413–428. doi:10.​1007/​s10950-009-9172-0 CrossRef
    Nishino T, Tanaka T, Hokugo A (2012) An evaluation method for the urban post-earthquake fire risk considering multiple scenarios of fire spread and evacuation. Fire Saf J 54:167–180. doi:10.​1016/​j.​firesaf.​2012.​06.​002 CrossRef
    Osaragi T (2012) Modeling a spatiotemporal distribution of stranded people returning home on foot in the aftermath of a large-scale earthquake. Nat Hazards 68:1385–1398. doi:10.​1007/​s11069-012-0175-8 CrossRef
    Pace B, Albarello D, Boncio P, Dolce M, Galli P, Messina P, Peruzza L, Sabetta F, Sanò T, Visini F (2011) Predicted ground motion after the L’Aquila 2009 earthquake (Italy, Mw 6.3): input spectra for seismic microzoning. Bull Earthq Eng 9:199–230. doi:10.​1007/​s10518-010-9238-y CrossRef
    Panza GF, La Mura C, Peresan A, Romanelli F, Vaccari F (2012) Chapter three-seismic hazard scenarios as preventive tools for a disaster resilient society. Adv Geophys 53:93–165CrossRef
    Prati G, Catufi V, Pietrantoni L (2012) Emotional and behavioural reactions to tremors of the Umbria–Marche earthquake. Disasters 36:439–451. doi:10.​1111/​j.​1467-7717.​2011.​01264.​x CrossRef
    Rabiaa C, Foudil C (2010) Crowd simulation influenced by agent’s socio-psychological state. J Comput 2:48–54
    Riad JK, Norris FH, Ruback RB (1999) Predicting evacuation in two major disasters: risk perception, social influence, and access to resources1. J Appl Soc Psychol 29:918–934CrossRef
    Roca A, Goula X, Susagna T, Chàvez J, Gonzalez M, Reinoso E (2006) A simplified method for vulnerability assessment of dwelling buildings and estimation of damage scenarios in Catalonia, Spain. Bull Earthq Eng 4:141–158. doi:10.​1007/​s10518-006-9003-4 CrossRef
    Rossetto T, Peiris N, Alarcon JE, So E, Sargeant S, Free M, Sword-Daniels V, Del Re D, Libberton C, Verucci E, Sammonds P, Faure Walker J (2010) Field observations from the Aquila, Italy earthquake of April 6, 2009. Bull Earthq Eng 9:11–37. doi:10.​1007/​s10518-010-9221-7 CrossRef
    Spence R, So E, Jenkins S, Coburn A, Ruffle S (2011) A global earthquake building damage and casualty database. In: Spence R, So E, Scawthorn C (eds) Human casualties in earthquakes SE-5. Springer, Netherlands, pp 65–79. doi:10.​1007/​978-90-481-9455-1_​5
    Strollo A, Parolai S, Bindi D, Chiauzzi L, Pagliuca R, Mucciarelli M, Zschau J (2011) Microzonation of Potenza (Southern Italy) in terms of spectral intensity ratio using joint analysis of earthquakes and ambient noise. Bull Earthq Eng 10:493–516. doi:10.​1007/​s10518-011-9256-4 CrossRef
    Takuma T (1972) Immediate responses at disaster sites. In: Proceedings of the Japan-United States disaster research seminar: organizational and community responses to disasters. Columbus, Ohio, pp 184–195
    Tang A, Wen A (2009) An intelligent simulation system for earthquake disaster assessment. Comput Geosci 35:871–879. doi:10.​1016/​j.​cageo.​2008.​03.​003 CrossRef
    Turner RH, Nigg JM, Heller Paz D (1986) Wailing for disaster: earthquake watch in California. University of California Press, Berkeley
    Vicente R, Parodi S, Lagomarsino S, Varum H, Mendes Silva JAR (2010) Seismic vulnerability and risk assessment: case study of the historic city centre of Coimbra, Portugal. Bull Earthq Eng 9:1067–1096. doi:10.​1007/​s10518-010-9233-3 CrossRef
    Yamazaki F, Nishimura A, Ueno Y (1996) Estimation of human casualties due to urban earthquakes. In: Proceedings of the 11th World conference on earthquake engineering. Paper #443. Acapulco, Mexico
    Yang X, Wu Z (2012) Civilian monitoring video records for earthquake intensity: a potentially unbiased online information source of macro-seismology. Nat Hazards 65:1765–1781. doi:10.​1007/​s11069-012-0447-3 CrossRef
    Yang X, Wu Z, Li Y (2011) Difference between real-life escape panic and mimic exercises in simulated situation with implications to the statistical physics models of emergency evacuation: the 2008 Wenchuan earthquake. Phys A 390:2375–2380. doi:10.​1016/​j.​physa.​2010.​10.​019 CrossRef
    Yu E (1995) Modelling strategic relationships for process reengineering. University of Toronto. Ph.D. Thesis
    Yu E (2009) Social modeling and i*. In: Borgida A, Chaudhri V, Giorgini P, Yu E (eds) Conceptual modeling: foundations and applications: essays in honor of John Mylopoulos. Springer, Berlin, pp 99–111CrossRef
    Yu E, Giorgini P, Maiden N, Mylopoulos J (2011) Social modeling for requirements engineering. The MIT Press, Cambridge
    Zanini MA, Pellegrino C, Morbin R, Modena C (2012) Seismic vulnerability of bridges in transport networks subjected to environmental deterioration. Bull Earthq Eng 11:561–579. doi:10.​1007/​s10518-012-9400-9 CrossRef
    Zheng X, Zhong T, Liu M (2009) Modeling crowd evacuation of a building based on seven methodological approaches. Build Environ 44:437–445. doi:10.​1016/​j.​buildenv.​2008.​04.​002 CrossRef
  • 作者单位:Enrico Quagliarini (1)
    Gabriele Bernardini (1)
    Chiara Wazinski (1)
    Luca Spalazzi (2)
    Marco D’Orazio (1)

    1. Department of Construction, Civil Engineering and Architecture (DICEA), Università Politecnica delle Marche, Via di Brecce Bianche, 60131, Ancona, Italy
    2. Department of Information Engineering (DII), Università Politecnica delle Marche, Via di Brecce Bianche, 60131, Ancona, Italy
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geotechnical Engineering
    Civil Engineering
    Geophysics and Geodesy
    Hydrogeology
    Structural Geology
  • 出版者:Springer Netherlands
  • ISSN:1573-1456
文摘
One of the most influencing elements in inhabitants’ earthquake safety definition is represented by the interactions between people and post-event environment in urban scenarios. Understanding and simulating rules for pedestrians’ motion in earthquake evacuation could be useful to inquire the risk assessment introducing the “human” factor influence: integrated “risk maps” could be realized by combining results of similar analyses with the traditional site hazard, buildings vulnerability and exposition indices. This work proposes an innovative approach based on the analysis of these interactions. Two experimentally-based activities are required: an analysis of human behaviors towards the post-earthquake environment; a relation for defining environmental modifications. Results firstly show a summary of man-environment interactions in earthquake evacuations. A possible criterion for path choice in evacuation is also numerically defined. A theoretical agent-based model is developed on these bases and summarizes phases, motion rules and man-environment interactions in earthquake pedestrians’ evacuation in urban scenarios. Secondly, quick criteria for scenario modifications involving ruins formation are proposed and evaluated: for each building, the percentages of internal and external ruins area is a function of its vulnerability and the expected earthquake Richter magnitude. Moreover, the external ruins formation criterion is validated by comparing predicted and effective values of ruins area depth in real cases. The model could be proposed as a tool for evaluating probable pedestrians’ choices in post-event scenarios, in order to reduce the interferences between the built environment and the evacuation process through interventions on buildings, urban fabric and strategies for emergency management.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700