用户名: 密码: 验证码:
Natural light harvesting systems: unraveling the quantum puzzles
详细信息    查看全文
  • 作者:A. Thilagam
  • 关键词:Exciton dynamics ; Quantum coherence ; Non ; hermitian ; Non ; Markovianity ; Composite bosons ; Hilbert space ; Light harvesting complexes
  • 刊名:Journal of Mathematical Chemistry
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:53
  • 期:2
  • 页码:466-494
  • 全文大小:796 KB
  • 参考文献:1. R.S. Knox, in / Primary Processes of Photosynthesis, ed. by J. Barber (Elsevier, Amsterdam, 1977), pp. 55-7
    2. H. Zuber, R. Cogdell, in / Anoxygenic Photosynthetic Bacteria, ed. by R. Blankenship, M. Madigan, C. Bauer (Kluwer, Dordrecht, 1995), pp. 315-48
    3. B. Chance, M. Nishimura, Proc. Nat. Acad. Sci. USA 46, 19 (1960)
    4. B. Green, in / Light-Harvesting Antennas in Photosynthesis, ed. by B.R. Green, W.W. Parson (Springer, New York, 2003)
    5. V. May, O. Kühn, / Charge and Energy Transfer Dynamics in Molecular Systems, 2nd edn. (Wiley, Berlin, 2004)
    6. H. van Amerongen, L. Valkunas, R. van Grondelle, / Photosynthetic Excitons (World Scientific, Singapore, 2000)
    7. R.J. Cogdell, A. Gall, J. K?hler, Q. Rev. Biophys. 39, 227 (2006)
    8. J.J. Hopfield, Proc. Nat. Acad. Sci. USA 71, 3640 (1974)
    9. T. F?rster, Ann. Phys. 437, 55 (1948)
    10. B. Happ, J. Sch?fer, R. Menzel, M.D. Hager, A. Winter, J. Popp, R. Beckert, B. Dietzek, U.S. Schubert, Macromolecules 44, 6277 (2011)
    11. M. Mohseni, P. Rebentrost, S. Lloyd, A. Aspuru-Guzik, J. Chem. Phys. 129, 174106 (2008)
    12. A. Thilagam, J. Chem. Phys. 136, 175104 (2012)
    13. E.N. Zimanyi, R.J. Silbey, J. Chem. Phys. 133, 144107 (2010)
    14. P.K. Ghosh, A.Y. Smirnov, F. Nori, J. Chem. Phys. 134, 244103 (2011)
    15. C. Olbrich, T.L.C. Jansen, J. Liebers, M. Aghtar, J. Strümpfer, K. Schulten, J. Knoester, U. Kleinekath?fer, J. Phys. Chem. B 115, 8609 (2011)
    16. H. van Amerongen, R. van Grondelle, J. Phys. Chem. B 105, 604 (2001)
    17. P. Horton, A.V. Ruban, J. Exp. Bot. 56, 365 (2005)
    18. M.A. Palacios, F.L. de Weerd, J.A. Ihalainen, R. van Grondelle, H. van Amerongen, J. Phys. Chem. B 106, 5782 (2002)
    19. T. Ritz, A. Damjanovi?, K. Schulten, Chem. Phys. Chem. 3, 243 (2002)
    20. S. Hoyer, M. Sarovar, K.B. Whaley, New J. Phys. 12, 065041 (2010)
    21. D.E. Tronrud, J. Wen, L. Gay, R.E. Blankenship, Photosynth. Res. 100, 79 (2009)
    22. Y.F. Li, W. Zhou, R.E. Blankenship, J.P. Allen, J. Mol. Biol. 271, 456 (1997)
    23. T. Brixner, J. Stenger, H.M. Vaswani, M. Cho, R.E. Blankenship, G.R. Fleming, Nature 434, 625 (2005)
    24. R.E. Fenna, B.W. Matthews, Nature 258, 573 (1975)
    25. A. Camara-Artigas, R.E. Blankenship, J. P. Allen Photosynth. Res. 75, 49 (2003)
    26. G.S. Engel, T.R. Calhoun, E.L. Read, T.K. Ahn, T. Mancal, Y.C. Cheng, R.E. Blankenship, G.R. Fleming, Nature 446, 782 (2007)
    27. J. Adolphs, T. Renger, Biophys. J. 91, 2778 (2006)
    28. M. Wendling, M.A. Przyjalgowski, D. Gülen, S.I.E. Vulto, T.J. Aartsma, R. van Grondelle, H. van Amerongen, Photosynth. Res. 71, 99 (2002)
    29. T. Markovich, S.M. Blau, 1J. Parkhill, C. Kreisbeck, J.N. Sanders, X. Andrade, A. Aspuru-Guzik, [quant-ph] arXiv:1307.4407 (2013)
    30. M.A. Nielsen, I.L. Chuang, / Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2002)
    31. M. Mohsenil, A.T. Rezakhani, D.A. Lidar, Phys. Rev. A 77, 032322 (2008)
    32. Y. Wu, X. Li, L.M. Duan, D.G. Steel, D. Gammon, Phys. Rev. Lett. 96, 087402 (2006)
    33. L. Zhang, H.B. Coldenstrodt-Ronge, A. Datta, G. Puentes, J.S. Lundeen, X-Min Jin, B.J. Smith, M.B. Plenio, I.A. Walmsley, Nat. Photon. 6, 364 (2012)
    34. Y.S. Weinstein, T.F. Havel, J. Emerson, N. Boulant, M. Saraceno, S. Lloyd, D.G. Cory, J. Chem. Phys. 121, 6117 (2004)
    35. T.J. Dunn, I.A. Walmsley, S. Mukamel, Phys. Rev. Lett. 74, 884 (1995)
    36. M. Schmidt am Busch, F. Müh, M.E. Madjet, T. Renger, J. Phys. Chem. Lett. 2, 93 (2011)
    37. J. Moix, J. Wu, P. Huo, D. Coker, J. Cao, J. Phys. Chem. Lett. 2, 3045 (2011)
    38. H.P. Breuer, F. Petruccione, / The Theory of Open Quantum Systems (Oxford University Press, New York, 2002)
    39. S.I.E. Vulto, M.A. de Baat, S. Neerken,
  • 作者单位:A. Thilagam (1)

    1. Information Technology, Engineering and Environment, University of South Australia, Adelaide, 5095, Australia
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Physical Chemistry
    Theoretical and Computational Chemistry
    Mathematical Applications in Chemistry
  • 出版者:Springer Netherlands
  • ISSN:1572-8897
文摘
In natural light harvesting systems, the sequential quantum events of photon absorption by specialized biological antenna complexes, charge separation, exciton formation and energy transfer to localized reaction centers culminates in the conversion of solar to chemical energy. A notable feature in these processes is the exceptionally high efficiencies ( \(>\) 95?%) at which excitation is transferred from the illuminated protein complex site to the reaction centers. The high speed of excitation propagation within a system of interwoven biomolecular network structures, is yet to be replicated in artificial light harvesting complexes. A clue to unraveling the quantum puzzles of nature may lie in the observations of long lived coherences lasting several picoseconds in the electronic spectra of photosynthetic complexes, which occurs even in noisy environmental baths. However the exact nature of the association between the high energy propagation rates and strength of quantum coherences remains largely unsolved. A number of experimental and theoretical studies have been devoted to unlocking the links between quantum processes and information protocols, in the hope of finding the answers to nature’s puzzling mode of energy propagation. This review presents recent developments in quantum theories, and links information-theoretic aspects with photosynthetic light-harvesting processes in biomolecular systems. There is examination of various attempts to pinpoint the processes that underpin coherence features arising from the light harvesting activities of biomolecular systems, with particular emphasis on the effects that factors such non-Markovianity, zeno mechanisms, teleportation, quantum predictability and the role of multipartite states have on the quantum dynamics of biomolecular systems. A discussion of how quantum thermodynamical principles and agent-based modeling and simulation approaches can improve our understanding of natural photosynthetic systems is included.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700