用户名: 密码: 验证码:
AT1 and Aldosterone Receptors Blockade Prevents the Chronic Effect of Nandrolone on the Exercise-Induced Cardioprotection in Perfused rat Heart Subjected to Ischemia and Reperfusion
详细信息    查看全文
  • 作者:Silvio Rodrigues Marques-Neto (1)
    Emanuelle Baptista Ferraz (1)
    Deivid Carvalho Rodrigues (2)
    Brian Njaine (3)
    Edson Rondinelli (2)
    Ant?nio Carlos Campos de Carvalho (3)
    Jose Hamilton Matheus Nascimento (1)
  • 关键词:Myocardial ischaemia ; reperfusion ; Exercise ; induced cardioprotection ; Anabolic steroid ; Nandrolone ; Renin ; angiotensin ; aldosterone system ; ATP ; dependent potassium channels
  • 刊名:Cardiovascular Drugs and Therapy
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:28
  • 期:2
  • 页码:125-135
  • 全文大小:1,685 KB
  • 参考文献:1. Rosamond W, Flegal K, Furie K, Go A, Greenlund K, Haase N, et al. Heart Disease and Stroke Statistics-008 Update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2008;117:e25–e146. CrossRef
    2. World Health Organization. Cardiovascular diseases (CVDs). Fact sheet No. 317, 2011.
    3. Shephard RJ, Balady GJ. Exercise as cardiovascular therapy. Circulation. 1999;99:963-2. CrossRef
    4. Myers J. Cardiology patient pages. Exercise and cardiovascular health. Circulation. 2003;107:e2-. CrossRef
    5. Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, Franklin BA, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc. 2007;39:1423-4. CrossRef
    6. Nelson ME, Rejeski WJ, Blair SN, Duncan PW, Judge JO, King AC, et al. Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Circulation. 2007;116:1094-05. CrossRef
    7. Leung FP, Yung LM, Laher I, Yao X, Chen ZY, Huang Y. Exercise, vascular wall and cardiovascular diseases: an update (part 1). Sports Med. 2008;38:1009-4. CrossRef
    8. McElroy CL, Gissen SA, Fishbein MC. Exercise-induced reduction in myocardial infarct size after coronary artery occlusion in the rat. Circulation. 1978;57:958-2. CrossRef
    9. Bowles DK, Farrar RP, Starnes JW. Exercise training improves cardiac function after ischemia in the isolated, working rat heart. Am J Physiol Heart Circ Physiol. 1992;263:H804-.
    10. Yamashita N, Baxter GF, Yellon DM. Exercise directly enhances myocardial tolerance to ischemia-reperfusion injury in the rat through a protein kinase C mediated mechanism. Heart. 2001;85:331-. CrossRef
    11. Gielen S, Schuler G, Adams V. Cardiovascular effects of exercise training–molecular mechanisms. Circulation. 2010;122:1221-8. CrossRef
    12. Frasier CR, Moore RL, Brown DA. Exercise-induced cardiac preconditioning: how exercise protects your achy-breaky heart. J Appl Physiol. 2011;111:905-5. CrossRef
    13. Brown DA, Chicco AJ, Jew KN, Johnson MS, Lynch JM, Watson PA, et al. Cardioprotection afforded by chronic exercise is mediated by sarcolemmal, and not the mitochondrial, isoform of the KATP channel in the rat. J Physiol. 2005;569:913-4. CrossRef
    14. Brown DA, Lynch JM, Armstrong CJ, Caruso NM, Ehlers LB, Johnson MS, et al. Susceptibility of the heart to ischaemia-reperfusion injury and exercise-induced cardioprotection are sex-dependent in the rat. J Physiol. 2005;564:619-0. CrossRef
    15. Chicco AJ, Johnson MS, Armstrong CJ, Lynch JM, Gardner RT, Fasen GS, et al. Sex-specific and exercise-acquired cardioprotection is abolished by sarcolemmal KATP channel blockade in the rat heart. Am J Physiol Heart Circ Physiol. 2007;292:H2432-. CrossRef
    16. Quindry JC, Schreiber L, Hosick P, Wrieden J, Irwin JM, Hoyt E. Mitochondrial KATP channel inhibition blunts arrhythmia protection in ischemic exercised hearts. Am J Physiol Heart Circ Physiol. 2010;299:H175-3. CrossRef
    17. Hartgens F, Kuipers H. Effects of androgenic-anabolic steroids in athletes. Sports Med. 2004;34:513-4. CrossRef
    18. Sj?qvist F, Garle M, Rane A. Use of doping agents, particularly anabolic steroids, in sports and society. Lancet. 2008;371:1872-2. CrossRef
    19. Sullivan ML, Martinez CM, Gennis P, Gallagher EJ. The cardiac toxicity of anabolic steroids. Prog Cardiovasc Dis. 1998;41:1-5. CrossRef
    20. Di Paolo M, Agozzino M, Toni C, Luciani AB, Molendini L, Scaglione M, et al. Sudden anabolic steroid abuse-related death in athletes. Int J Cardiol. 2007;114:114-. CrossRef
    21. Fineschi V, Baroldi G, Monciotti F, Reattelli LP, Turillazzi E. Anabolic steroid abuse and cardiac sudden death: a pathologic study. Arch Pathol Lab Med. 2001;125:253-.
    22. Urhausen A, Albers T, Kindermann W. Are the cardiac effects of anabolic steroid abuse in strength athletes reversible? Heart. 2004;90:496-01. CrossRef
    23. Du Toit EF, Rossouw E, Van Rooyen J, Lochner A. Proposed mechanisms for the anabolic steroid-induced increase in myocardial susceptibility to ischemia/reperfusion injury. Cardiovasc J South Afr. 2005;16:21-.
    24. Chaves EA, Pereira-Junior PP, Fortunato RS, Masuda MO, Carvalho ACC, Carvalho DP, et al. Nandrolone decanoate impairs exercise-induced cardioprotection: role of antioxidant enzymes. J Steroid Biochem Mol Biol. 2006;99:223-0. CrossRef
    25. Rocha FL, Carmo EC, Roque FR, Hashimoto NY, Rossoni LV, Frimm C, et al. Anabolic steroids induce cardiac renin-angiotensin system and impair the beneficial effects of aerobic training in rats. Am J Physiol Heart Circ Physiol. 2007;293:H3575-3. CrossRef
    26. Do Carmo EC, Fernandes T, Koike D, Da Silva Jr ND, Mattos KC, Rosa KT, et al. Anabolic steroid associated to physical training induces deleterious cardiac effects. Med Sci Sports Exerc. 2011;43:1836-8. CrossRef
    27. Marsh JD, Lehmann MH, Ritchie RH, Gwathmey JK, Green GE, Schiebinger RJ. Androgen receptors mediate hypertrophy in cardiac myocytes. Circulation. 1998;98:256-1. CrossRef
    28. Iwai N, Shimoike H, Kinoshita M. Cardiac rennin-angiotensin system in the hypertrophied heart. Circulation. 1995;92:2690-. CrossRef
    29. Barauna VG, Magalhaes FC, Krieger JE, Oliveira EM. AT1 receptor participates in the cardiac hypertrophy induced by resistance training in rats. Am J Physiol Regul Integr Comp Physiol. 2008;295:R381-. CrossRef
    30. Zhang AD, Cat AND, Soukaseum C, Escoubet B, Cherfa A, Messaoudi S, et al. Cross-talk between mineralocorticoid and angiotensin II signaling for cardiac remodeling. Hypertension. 2008;52:1060-. CrossRef
    31. Kalra D, Sivasubramanian N, Mann DL. Angiotensin II induces tumor necrosis factor biosynthesis in the adult mammalian heart through a protein kinase C–dependent pathway. Circulation. 2002;105:2198-05. CrossRef
    32. Nakamura K, Fushimi K, Kouchi H, Mihara K, Miyazaki M, Ohe T, et al. Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-α and angiotensin II. 1998;98:794-.
    33. Tavares NI, Philip-Couderc P, Baertschi AJ, Lerch R, Montessuit C. Angiotensin II and tumour necrosis factor α as mediators of ATP-dependent potassium channel remodeling in post-infarction heart failure. Cardiovasc Res. 2009;83:726-6. CrossRef
    34. Serejo FC, Rodrigues-Junior LF, Tavares KCS, Campos de Carvalho AC, Nascimento JHM. Cardioprotective properties of humoral factors released from rat hearts subject to ischemic preconditioning. J Cardiovasc Pharmacol. 2007;49:214-0. CrossRef
    35. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3:1101-. CrossRef
    36. Robert V, Heymes C, Silvestre JS, Sabri A, Swynghedauw B, Delcayre C. Angiotensin AT1 receptor subtype as a cardiac target of aldosterone: role in aldosterone-salt-induced fibrosis. Hypertension. 1999;33:981-. CrossRef
    37. Takeda Y, Yoneda T, Demura M, Usukura M, Mabuchi H. Calcineurin inhibition attenuates mineralocorticoid-induced cardiac hypertrophy. Circulation. 2002;105:677-. CrossRef
    38. Silvestre JS, Heymes C, Oubéna?ssa A, Robert V, Aupetit-Faisant B, Carayon A, et al. Activation of cardiac aldosterone production in rat myocardial infarction. Circulation. 1999;99:2694-01. CrossRef
    39. Ullian ME, Schelling JR, Linas SL. Aldosterone enhances angiotensin II receptor binding and inositol phosphate responses. Hypertension. 1992;20:67-3. CrossRef
    40. Mill JG, Milanez MC, Rezende MM, Gomes MGS, Leite CM. Spironolactone prevents cardiac collagen proliferation after myocardial infarction in rats. Clin Exp Pharmacol Physiol. 2003;30:739-4. CrossRef
    41. Chai W, Garrelds IM, Arulmani U, Schoemaker RG, Lamers JMJ, Danser AHJ. Genomic and nongenomic effects of aldosterone in the rat: why is spironolactone cardioprotective. Br J Pharmacol. 2005;145:664-1. CrossRef
    42. Sato M, Engelman RM, Otani H, Maulik N, Rousou JA, Flack III JE, et al. Myocardial protection by preconditioning of heart with losartan, na angiotensin II type 1-receptor blocker: implication of bradykinin-dependent and bradykinin-independent mechanisms. Circulation. 2000;102(Supl 3):346-1.
    43. Flynn JD, Akers WS. Effects of the angiotensin II subtype 1 receptor antagonist losartan on functional recovery of isolated rat hearts undergoing global myocardial ischemia-reperfusion. Pharmacotherapy. 2003;23:1401-0. CrossRef
    44. Tsounapi P, Saito M, Dimitriadis F, Kitatani K, Kinoshita Y, Shomori K, et al. The role of KATP channels on ischemia-reperfusion injury in the rat testis. Life Sci. 2012;90:649-6. CrossRef
    45. Seharaseyon J, Sasaki N, Ohler A, Sato T, Fraser H, Johns DC, et al. Evidence against functional heteromultimerization of the KATP channel subunits Kir6.1 and Kir6.2. 275. J Biol Chem. 2000;23:17561-. CrossRef
    46. Flagg TP, Kurata HT, Masia R, Caputa G, Magnuson MA, Lefer DJ, et al. Differential structure of atrial and ventricular KATP: atrial KATP channels require SUR1. Circ Res. 2008;103:1458-5. CrossRef
    47. Morrissey A, Rosner E, Lanning J, Parachuru L, Chowdhury PD, Han S, et al. Immunolocalization of KATP channel subunits in mouse and rat cardiac myocytes and the coronary vasculature. BMC Physiol. 2005;5:1. CrossRef
    48. Seharaseyon J, Ohler A, Sasaki N, Fraser H, Sato T, Johns DC, et al. Molecular composition of mitochondrial ATP-sensitive potassium channels probed by viral Kir gene transfer. J Mol Cell Cardiol. 2000;32:1923-0. CrossRef
    49. Cuong DV, Kim N, Joo H, Youm JB, Chung J-Y, Lee Y, et al. Subunit composition of ATP-sensitive potassium channels in mitochondria of rat hearts. Mitochondrion. 2005;5:121-3. CrossRef
    50. Foster DB, Rucker JJ, Marbán E. Is Kir6.1 a subunit of mitoKATP? Biochem Biophys Res Commun. 2008;366:649-6. CrossRef
    51. Kubo M, Quayle JM, Standen NB. Angiotensin II inhibition of ATP-sensitive K+ currents in rat arterial smooth muscle cells through protein kinase C. J Physiol. 1997;503:480-6. CrossRef
    52. Sampson LJ, Davies LM, Barrett-Jolley R, Standen NB, Dart C. Angiotensin II-activated protein kinase C targets caveolae to inhibit aortic ATPsensitive potassium channels. Cardiovasc Res. 2007;76:61-0. CrossRef
  • 作者单位:Silvio Rodrigues Marques-Neto (1)
    Emanuelle Baptista Ferraz (1)
    Deivid Carvalho Rodrigues (2)
    Brian Njaine (3)
    Edson Rondinelli (2)
    Ant?nio Carlos Campos de Carvalho (3)
    Jose Hamilton Matheus Nascimento (1)

    1. Laboratório de Eletrofisiologia Cardíaca Antonio Paes de Carvalho, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco G, 21.941-902, Rio de Janeiro, Brazil
    2. Laboratório de Metabolismo Macromolecular Firmino Torres de Castro, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
    3. Laboratório de Cardiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
  • ISSN:1573-7241
文摘
Purpose Myocardial tolerance to ischaemia/reperfusion (I/R) injury is improved by exercise training, but this cardioprotection is impaired by the chronic use of anabolic androgenic steroids (AAS). The present study evaluated whether blockade of angiotensin II receptor (AT1-R) with losartan and aldosterone receptor (mineralocorticoid receptor, MR) with spironolactone could prevent the deleterious effect of AAS on the exercise-induced cardioprotection. Methods and Results Male Wistar rats were exercised and treated with either vehicle, nandrolone decanoate (10?mg/kg/week i.m.) or the same dose of nandrolone plus losartan or spironolactone (20?mg/kg/day orally) for 8?weeks. Langendorff-perfused hearts were subjected to I/R and evaluated for the postischaemic recovery of left ventricle (LV) function and infarct size. mRNA and protein expression of angiotensin II type 1 receptor (AT1-R), mineralocorticoid receptor (MR), and KATP channels were determined by reverse-transcriptase polymerase chain reaction and Western blotting. Postischaemic recovery of LV function was better and infarct size was smaller in the exercised rat hearts than in the sedentary rat hearts. Nandrolone impaired the exercise-induced cardioprotection, but this effect was prevented by losartan (AT1-R antagonist) and spironolactone (MR antagonist) treatments. Myocardial AT1-R and MR expression levels were increased, and the expression of the KATP channel subunits SUR2a and Kir6.1 was decreased and Kir6.2 increased in the nandrolone-treated rat hearts. The nandrolone-induced changes of AT1-R, MR, and KATP subunits expression was normalized by the losartan and spironolactone treatments. Conclusion The chronic nandrolone treatment impairs the exercise-induced cardioprotection against ischaemia/reperfusion injury by activating the cardiac renin-angiotensin-aldosterone system and downregulating KATP channel expression.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700