用户名: 密码: 验证码:
Early-life stress increases the motility of microglia in adulthood
详细信息    查看全文
  • 作者:Yusuke Takatsuru (1) (3)
    Junichi Nabekura (2) (4)
    Tatsuya Ishikawa (2) (3)
    Shin-ichi Kohsaka (5)
    Noriyuki Koibuchi (1)

    1. Department of Integrative Physiology
    ; Gunma University Graduate School of Medicine ; Maebashi ; Gunma ; 371-8511 ; Japan
    3. CREST
    ; Japan Science and Technology Agency ; Kawaguchi ; 332-0012 ; Japan
    2. Division of Homeostatic Development
    ; National Institute for Physiological Sciences ; Okazaki ; Aichi ; 444-8585 ; Japan
    4. The Graduate University for Advanced Studies
    ; Hayama ; Kanagawa ; 240-0193 ; Japan
    5. Department of Neurochemistry
    ; National Institute of Neuroscience ; Kodaira ; Tokyo ; 187-8502 ; Japan
  • 关键词:Maternal deprivation ; In vivo imaging ; In vivo microdialysis ; Somatosensory cortex
  • 刊名:The Journal of Physiological Sciences
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:65
  • 期:2
  • 页码:187-194
  • 全文大小:400 KB
  • 参考文献:1. Romeo, RD, McEwen, BS (2006) Stress and the adolescent brain. Ann N Y Acad Sci 1094: pp. 202-214 CrossRef
    2. Shair, HN (2007) Acquisition and expression of a socially mediated separation response. Behav Brain Res 182: pp. 180-192 CrossRef
    3. Kosten, TA, Lee, HJ, Kim, JJ (2006) Early life stress impairs fear conditioning in adult male and female rats. Brain Res 1087: pp. 142-150 CrossRef
    4. Parfitt, DB, Levin, JK, Saltstein, KP, Klayman, AS, Greer, LM, Helmreich, DL (2004) Differential early rearing environments can accentuate or attenuate the responses to stress in male C57BL/6 mice. Brain Res 1016: pp. 111-118 CrossRef
    5. Slotten, HA, Kalinichev, M, Hagan, JJ, Marsden, CA, Fone, KC (2006) Long-lasting changes in behavioural and neuroendocrine indices in the rat following neonatal maternal separation: gender-dependent effects. Brain Res 1097: pp. 123-132 CrossRef
    6. Wigger, A, Neumann, ID (1999) Periodic maternal deprivation induces gender-dependent alterations in behavioral and neuroendocrine responses to emotional stress in adult rats. Physiol Behav 66: pp. 293-302 CrossRef
    7. Bock, J, Gruss, M, Becker, S, Braun, K (2005) Experience-induced changes of dendritic spine densities in the prefrontal and sensory cortex: correlation with developmental time windows. Cereb Cortex 15: pp. 802-808 CrossRef
    8. Ovtscharoff, W, Braun, K (2001) Maternal separation and social isolation modulate the postnatal development of synaptic composition in the infralimbic cortex of Octodon degus. Neuroscience 104: pp. 33-40 CrossRef
    9. Takatsuru, Y, Yoshitomo, M, Nemoto, T, Eto, K, Nabekura, J (2009) Maternal separation decreases the stability of mushroom spines in adult mice somatosensory cortex. Brain Res 1294: pp. 45-51 CrossRef
    10. Toya, S, Takatsuru, Y, Amano, I, Koibuchi, N (2013) The molecular mechanism of early life stress for synaptic instability in somatosensory cortex. J Physiol Sci 63: pp. S152
    11. Toya, S, Takatsuru, Y, Kokubo, M, Amano, I, Shimokawa, N, Koibuchi, N (2014) Early-life-stress affects the homeostasis of glutamatergic synapses. Eur J Neurosci 40: pp. 3627-3634 CrossRef
    12. Eyo, UB, Wu, LJ (2013) Bidirectional microglia-neuron communication in the healthy brain. Neural Plast 2013: pp. 456857
    13. Miyamoto, A, Wake, H, Moorhouse, AJ, Nabekura, J (2013) Microglia and synapse interactions: fine tuning neural circuits and candidate molecules. Front Cell Neurosci 7: pp. 70 CrossRef
    14. Morris, GP, Clark, IA, Zinn, R, Vissel, B (2013) Microglia: a new frontier for synaptic plasticity, learning and memory, and neurodegenerative disease research. Neurobiol Learn Mem 105: pp. 40-53 CrossRef
    15. Wake, H, Moorhouse, AJ, Miyamoto, A, Nabekura, J (2013) Microglia: actively surveying and shaping neuronal circuit structure and function. Trends Neurosci 36: pp. 209-217 CrossRef
    16. Nimmerjahn, A, Kirchhoff, F, Helmchen, F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308: pp. 1314-1318 CrossRef
    17. Wake, H, Moorhouse, AJ, Jinno, S, Kohsaka, S, Nabekura, J (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29: pp. 3974-3980 CrossRef
    18. Tremblay, M-脠, Lowery, RL, Majewska, AK (2010) Microglial interactions with synapses are modulated by visual experience. PLoS Biol 8: pp. e1000527 CrossRef
    19. Hirasawa, T, Ohsawa, K, Imai, Y, Ondo, Y, Akazawa, C, Uchino, S, Kohsaka, S (2005) Visualization of microglia in living tissues using Iba1-EGFP transgenic mice. J Neurosci Res 81: pp. 357-362 CrossRef
    20. Crawford, MA, Doyle, W, Leaf, A, Leighfield, M, Ghebremeskel, K, Phylactos, A (1993) Nutrition and neurodevelopmental disorders. Nutr Health 9: pp. 81-97 CrossRef
    21. Takatsuru, Y, Eto, K, Kaneko, R, Masuda, H, Shimokawa, N, Koibuchi, N, Nabekura, J (2013) Critical role of the astrocyte for functional remodeling in contralateral hemisphere of somatosensory cortex after stroke. J Neurosci 33: pp. 4683-4692 CrossRef
    22. Grutzendler, J, Kasthuri, N, Gan, WB (2002) Long-term dendritic spine stability in the adult cortex. Nature 420: pp. 812-816 CrossRef
    23. Sanacora, G, Treccani, G, Popoli, M (2012) Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology 62: pp. 63-77 CrossRef
    24. Lowy, MT, Gault, L, Yamamoto, BK (1993) Adrenalectomy attenuates stress-induced elevations in extracellular glutamate concentrations in the hippocampus. J Neurochem 61: pp. 1957-1960 CrossRef
    25. Moghaddam, B (1993) Stress preferentially increases extraneuronal levels of excitatory amino acids in the prefrontal cortex: comparison to hippocampus and basal ganglia. J Neurochem 60: pp. 1650-1657 CrossRef
    26. Reznikov, LR, Grillo, CA, Piroli, GG, Pasumarthi, RK, Reagan, LP, Fadel, J (2007) Acute stress-mediated increases in extracellular glutamate levels in the rat amygdala: differential effects of antidepressant treatment. Eur J Neurosci 25: pp. 3109-3114 CrossRef
    27. Musazzi, L, Milanese, M, Farisello, P, Zappettini, S, Tardito, D, Barbiero, VS, Bonifacino, T, Mallei, A, Baldelli, P, Racagni, G, Raiteri, M, Benfenati, F, Bonanno, G, Popoli, M (2010) Acute stress increases depolarization-evoked glutamate release in the rat prefrontal/frontal cortex: the dampening action of antidepressants. PLoS ONE 5: pp. e8566 CrossRef
    28. Banasr, M, Duman, RS (2008) Glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors. Biol Psychiatry 64: pp. 863-870 CrossRef
    29. Popoli, M, Yan, Z, McEwen, BS, Sanacora, G (2011) The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nat Rev Neurosci 13: pp. 22-37
    30. Aguzzi, A, Barres, BA, Bennett, ML (2013) Microglia: scapegoat, saboteur, or something else?. Science 339: pp. 156-161 CrossRef
    31. Perry, VH, O鈥機onnor, V (2010) The role of microglia in synaptic stripping and synaptic degeneration: a revised perspective. ASN Neuro 2: pp. e00047
    32. Paolicelli, RC, Bolasco, G, Pagani, F, Maggi, L, Scianni, M, Panzanelli, P, Giustetto, M, Ferreira, TA, Guiducci, E, Dumas, L, Ragozzino, D, Gross, CT (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333: pp. 1456-1458 CrossRef
    33. Parkhurst, CN, Yang, G, Ninan, I, Savas, JN, Yates, JR, Lafaille, JJ, Hempstead, BL, Littman, , Gan, WB (2013) Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155: pp. 1596-1609 CrossRef
    34. Schafer, DP, Lehrman, EK, Kautzman, AG, Koyama, R, Mardinly, AR, Yamasaki, R, Ransohoff, RM, Greenberg, ME, Barres, BA, Stevens, B (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74: pp. 691-705 CrossRef
    35. Xu, HT, Pan, F, Yang, G, Gan, WB (2007) Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nat Neurosci 10: pp. 549-551 CrossRef
    36. Dombeck, DA, Harvey, CD, Tian, L, Looger, LL, Tank, DW (2010) Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nat Neurosci 13: pp. 1433-1440 CrossRef
  • 刊物主题:Human Physiology; Neurosciences; Animal Biochemistry; Animal Physiology; Cell Physiology; Neurobiology;
  • 出版者:Springer Japan
  • ISSN:1880-6562
文摘
Early-life stress may cause several neuropsychological disorders in adulthood. Such disorders may be induced as a result of instability of neuronal circuits and/or synaptic formation. However, the mechanisms underlying such instability have not yet been clearly understood. We previously reported that the mushroom spine in the somatosensory cortex (SSC) is unstable in early-life stressed mice not only in the juvenile stage but also in adulthood. In this study, we measured the number and motility of microglial processes in early-life stressed mice to understand the mechanism further. We found that the number and motility of filopodia-like protrusions of microglial processes tended to increase in the SSC of early-life stressed mice. Interestingly, the motility of protrusions correlated significantly with the nociceptive threshold level measured by the von Frey test. These results indicated that the activity of microglia affected the neuronal function in early-life stressed mice.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700