用户名: 密码: 验证码:
Highly efficient synthesis of quinoxaline derivatives from 1,2-benzenediamine and \(\alpha \
详细信息    查看全文
  • 作者:Jianwei Yan ; Yanhong Xu ; Fangfang Zhuang ; Jie Tian ; Guisheng Zhang
  • 关键词:\(\alpha \) ; Aminoxylated dicarbonyl compounds ; Quinoxaline ; Pyrazine ; Pyridopyrazine ; Benzoxazin ; 2 ; one
  • 刊名:Molecular Diversity
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:20
  • 期:2
  • 页码:567-573
  • 全文大小:741 KB
  • 参考文献:1.Mussinan CJ, Walradt JP (1974) Volatile constituents of pressure cooked pork liver. J Agric Food Chem 22:827–831. doi:10.​1021/​jf60195a002 CrossRef
    2.Kim YB, Kim YH, Park JY, Kim SK (2004) Synthesis and biological activity of new quinoxaline antibiotics of echinomycin analogues. Bioorg Med Chem Lett 14:541–544. doi:10.​1016/​j.​bmcl.​2003.​09.​086 CrossRef PubMed
    3.Socha AM, LaPlante KL, Russell DJ, Rowley DC (2009) Structure-activity studies of echinomycin antibiotics against drug-resistant and biofilm-forming staphylococcus aureus and enterococcus faecalis. Bioorg Med Chem Lett 19:504–1507. doi:10.​1016/​j.​bmcl.​2009.​01.​010
    4.Pettit GR, Hogan F, Xu J-P, Tan R, Nogawa T, Cichacz Z, Pettit RK, Du J, Ye Q-H, Cragg GM, Herald CL, Hoard MS, Goswami A, Searcy J, Tackett L, Doubek DL, Williams L, Hooper JNA, Schmidt JM, Chapuis J-C, Tackett DN, Craciunescu F (2008) Antineoplastic agents. 536. New sources of naturally occurring cancer cell growth inhibitors from marine organisms, terrestrial plants, and microorganisms. J Nat Prod 71:438–444. doi:10.​1021/​np700738k CrossRef PubMed
    5.Lingham RB, Hsu AH, O’brien JA, Sigmund JM, Sanchez M, Gagliardi MM, Heimbuch BK, Genilloud O, Martin I, Diez MT (1996) Quinoxapeptins: novel chromodepsipeptide inhibitors of HIV-1 and HIV-2 reverse transcriptase. I. The producing organism and biological activity. J Antibiot 49:253–259. doi:10.​7164/​antibiotics.​49.​253 CrossRef PubMed
    6.Blum S, Fiedler H-P, Groth I, Kempter C, Stephan H, Nicholson G, Metzger JW, Jung G (1995) Biosynthetic capacities of actinomycetes. 4. Echinoserine, a new member of the quinoxaline group, produced by Streptomyces tendae. J Antibiot 48:619–625. doi:10.​7164/​antibiotics.​48.​619 CrossRef PubMed
    7.El Aissi R, Liu J, Besse S, Canitrot D, Chavignon O, Chezal J-M, Miot-Noirault E, Moreau E (2014) Synthesis and biological evaluation of new quinoxaline derivatives of ICF01012 as melanoma-targeting probes. ACS Med Chem Lett 5:468–473. doi:10.​1021/​ml400468x CrossRef PubMed PubMedCentral
    8.Lee S-B, Park YI, Dong M-S, Gong Y-D (2010) Identification of 2,3,6-trisubstituted quinoxaline derivatives as a Wnt2/\(\beta \) -catenin pathway inhibitor in non-small-cell lung cancer cell lines. Bioorg Med Chem Lett 20:5900–5904. doi:10.​1016/​j.​bmcl.​2010.​07.​088 CrossRef PubMed
    9.Hazeldine ST, Polin L, Kushner J, Paluch J, White K, Edelstein M, Palomino E, Corbett TH, Horwitz JP (2001) Design, synthesis, and biological evaluation of analogues of the antitumor agent, 2-4-[(7-chloro-2-quinoxalinyl)oxy]phenoxypropionic acid (XK469). J Med Chem 44:1758–1776. doi:10.​1021/​jm0005149 CrossRef PubMed
    10.Hazeldine ST, Polin L, Kushner J, White K, Corbett TH, Horwitz JP (2005) Synthetic modification of the 2-oxypropionic acid moiety in 2-4-[(7-chloro-2-quinoxalinyl)oxy]phenoxypropionic acid (XK469), and consequent antitumor effects. Part 4. Bioorg Med Chem 13:3910–3920. doi:10.​1016/​j.​bmc.​2005.​04.​011 CrossRef PubMed
    11.Smits RA, Lim HD, Hanzer A, Zuiderveld OP, Guaita E, Adami M, Coruzzi G, Leurs R, de Esch IJP (2008) Fragment based design of new H4 receptor-ligands with anti-inflammatory properties in vivo. J Med Chem 51:2457–2467. doi:10.​1021/​jm7014217 CrossRef PubMed
    12.Seitz LE, Suling WJ, Reynolds RC (2002) Synthesis and antimycobacterial activity of pyrazine and quinoxaline derivatives. J Med Chem 45:5604–5606. doi:10.​1021/​jm020310n CrossRef PubMed
    13.Gazit A, App H, McMahon G, Chen J, Levitzki A, Bohmer FD (1996) Tyrphostins. 5. Potent inhibitors of platelet-derived growth factor receptor tyrosine kinase: structure-activity relationships in quinoxalines, quinolines, and indole tyrphostins. J Med Chem 39:2170–2177. doi:10.​1021/​jm950727b CrossRef PubMed
    14.Hassan SY, Khattab SN, Bekhit AA, Amer A (2006) Synthesis of 3-benzyl-2-substituted quinoxalines as novel monoamine oxidase A inhibitors. Bioorg Med Chem Lett 16:1753–1756. doi:10.​1016/​j.​bmcl.​2005.​11.​088 CrossRef PubMed
    15.Rong F, Chow S, Yan S, Larson G, Hong Z, Wu J (2007) Structure-activity relationship (SAR) studies of quinoxalines as novel HCV NS5B RNA-dependent RNA polymerase inhibitors. Bioorg Med Chem Lett 17:1663–1666. doi:10.​1016/​j.​bmcl.​2006.​12.​103 CrossRef PubMed
    16.Sonawane ND, Rangnekar DW (2002) Synthesis and application of 2-styryl-6,7-dichlorothiazolo[4,5-b]-quinoxaline based fluorescent dyes: Part 3. J Heterocycl Chem 39:303–308. doi:10.​1002/​jhet.​5570390210 CrossRef
    17.Dailey S, Feast WJ, Peace RJ, Sage IC, Till S, Wood EL (2001) Synthesis and device characterisation of side-chain polymer electron transport materials for organic semiconductor applications. J Mater Chem 11:2238–2243. doi:10.​1039/​B104674H CrossRef
    18.Crossley MJ, Johnston LA (2002) Laterally-extended porphyrin systems incorporating a switchable unit. Chem Commun 2002:1122–1123. doi:10.​1039/​B111655J CrossRef
    19.Justin Thomas KR, Velusamy M, Lin JT, Chuen C-H, Tao Y-T (2005) Chromophore-labeled quinoxaline derivatives as efficient electroluminescent materials. Chem Mater 17:1860–1866. doi:10.​1021/​cm047705a CrossRef
    20.Toshima K, Takano R, Ozawa T, Matsumura S (2002) Molecular design and evaluation of quinoxaline-carbohydrate hybrids as novel and efficient photo-induced GG-selective DNA cleaving agents. Chem Commun 2002:212–213. doi:10.​1039/​B107829C CrossRef
    21.Gawrys P, Marszalek T, Bartnik E, Kucinska M, Ulanski J, Zagorska M (2011) Novel, low-cost, highly soluble N-type semiconductors: tetraazaanthracene tetraesters. Org Lett 13:6090–6093. doi:10.​1021/​ol2025789 CrossRef PubMed
    22.Mahesh R, Dhar AK, Sasank TVNVT, Thirunavukkarasu S, Devadoss T (2011) Citric acid: an efficient and green catalyst for rapid one pot synthesis of quinoxaline derivatives at room temperature. Chin Chem Lett 22:389–392. doi:10.​1016/​j.​cclet.​2010.​11.​002 CrossRef
    23.Zhou JF, Gong GX, Shi KB, Zhi SJ (2009) Catalyst-free and solvent-free method for the synthesis of quinoxalines under microwave irradiation. Chin Chem Lett 20:672–675. doi:10.​1016/​j.​cclet.​2009.​02.​007 CrossRef
    24.Kumar A, kumar S, Saxena A, De A, Mozumdar S (2008) Ni-nanoparticles: an efficient catalyst for the synthesis of quinoxalines. Catal Commun 9:778–784. doi:10.​1016/​j.​catcom.​2007.​08.​021 CrossRef
    25.Haldar P, Dutta B, Guin J, Ray JK (2007) Uncatalyzed condensation between aryl-1,2-diamines and diethyl bromomalonate: a one-pot access to substituted ethyl 3-hydroxyquinoxaline-2-carboxylates. Tetrahedron Lett 48:5855–5857. doi:10.​1016/​j.​tetlet.​2007.​06.​065 CrossRef
    26.Meshram HM, Ramesh P, Santosh Kumar G, Chennakesava Reddy B (2010) One-pot synthesis of quinoxaline-2-carboxylate derivatives using ionic liquid as reusable reaction media. Tetrahedron Lett 51:4313–4316. doi:10.​1016/​j.​tetlet.​2010.​05.​099 CrossRef
    27.Anil Kumar BSP, Madhav B, Harsha Vardhan Reddy K, Nageswar YVD (2011) Quinoxaline synthesis in novel tandem one-pot protocol. Tetrahedron Lett 52:2862–2865. doi:10.​1016/​j.​tetlet.​2011.​03.​110 CrossRef
    28.Paul S, Basu B (2011) Synthesis of libraries of quinoxalines through eco-friendly tandem oxidation-condensation or condensation reactions. Tetrahedron Lett 52:6597–6602. doi:10.​1016/​j.​tetlet.​2011.​09.​141 CrossRef
    29.Das B, Venkateswarlu K, Suneel K, Majhi A (2007) An efficient and convenient protocol for the synthesis of quinoxalines and dihydropyrazines via cyclization-oxidation processes using \(\text{ HClO }_{4} \cdot \text{ SiO }_{2}\) as a heterogeneous recyclable catalyst. Tetrahedron Lett 48:5371–5374. doi:10.​1016/​j.​tetlet.​2007.​06.​036 CrossRef
    30.Madhav B, Narayana Murthy S, Prakash Reddy V, Rama Rao K, Nageswar YVD (2009) Biomimetic synthesis of quinoxalines in water. Tetrahedron Lett 50:6025–6028. doi:10.​1016/​j.​tetlet.​2009.​08.​033 CrossRef
    31.Wan J-P, Gan S-F, Wu J-M, Pan Y (2009) Water mediated chemoselective synthesis of 1,2-disubstituted benzimidazoles using o-phenylenediamine and the extended synthesis of quinoxalines. Green Chem 11:1633–1637. doi:10.​1039/​B914286J CrossRef
    32.Meshram HM, Santosh Kumar G, Ramesh P, Chennakesava Reddy B (2010) A mild and convenient synthesis of quinoxalines via cyclization-oxidation process using DABCO as catalyst. Tetrahedron Lett 51:2580–2585. doi:10.​1016/​j.​tetlet.​2010.​01.​107 CrossRef
    33.Kumar K, Mudshinge SR, Goyal S, Gangar M, Nair VA (2015) A catalyst free, one pot approach for the synthesis of quinoxaline derivatives via oxidative cyclisation of 1,2-diamines and phenacyl bromides. Tetrahedron Lett 56:1266–1271. doi:10.​1016/​j.​tetlet.​2015.​01.​138 CrossRef
    34.Kamal A, Babu KS, Hussaini SMA, Mahesh R, Alarifi A (2015) Amberlite IR-120H, an efficient and recyclable solid phase catalyst for the synthesis of quinoxalines: a greener approach. Tetrahedron Lett 56:2803–2808. doi:10.​1016/​j.​tetlet.​2015.​04.​046 CrossRef
    35.Kamal A, Babu KS, Faazil S, Hussaini SMA, Shaik AB (2014) L-Proline mediated synthesis of quinoxalines; evaluation of cytotoxic and antimicrobial activity. RSC Adv 4:46369–46377. doi:10.​1039/​c4ra08615e CrossRef
    36.Jeena V, Robinson RS (2014) An environmentally friendly, cost effective synthesis of quinoxalines: the influence of microwave reaction conditions. Tetrahedron Lett 55:642–645. doi:10.​1016/​j.​tetlet.​2013.​11.​100 CrossRef
    37.Cho CS, Ren WX (2009) A recyclable copper catalysis in quinoxaline synthesis from \(\alpha \) -hydroxyketones and o-phenylenediamines. J Organomet Chem 694:3215–3217. doi:10.​1016/​j.​jorganchem.​2009.​06.​002 CrossRef
    38.Robinson RS, Taylor RJK (2005) Quinoxaline synthesis from \(\alpha \) -hydroxy ketones via a tandem oxidation process using catalysed aerobic oxidation. Synlett 2005:1003–1005. doi:10.​1055/​s-2005-864830
    39.Kim SY, Park KH, Chung YK (2005) Manganese(IV) dioxide-catalyzed synthesis of quinoxalines under microwave irradiation. Chem Commun 2005:1321–1323. doi:10.​1039/​b417556e CrossRef
    40.Raw SA, Wilfred CD, Taylor RJK (2004) Tandem oxidation processes for the preparation of nitrogen-containing heteroaromatic and heterocyclic compounds. Org Biom Chem 2:788–796. doi:10.​1039/​b315689c CrossRef
    41.Hille T, Irrgang T, Kempe R (2014) The synthesis of benzimidazoles and quinoxalines from aromatic diamines and alcohols by iridium-catalyzed acceptorless dehydrogenative alkylation. Chem Eur J 20:5569–5572. doi:10.​1002/​chem.​201400400 CrossRef PubMed
    42.Cho CS, Oh SG (2006) A new ruthenium-catalyzed approach for quinoxalines from o-phenylenediamines and vicinal-diols. Tetrahedron Lett 47:5633–5636. doi:10.​1016/​j.​tetlet.​2006.​06.​038 CrossRef
    43.Aparicio D, Attanasi OA, Filippone P, Ignacio R, Lillini S, Mantellini F, Palacios F, de los Santos JM (2006) Straightforward access to pyrazines, piperazinones, and quinoxalines by reactions of 1,2-diaza-1,3-butadienes with 1,2-diamines under solution, solvent-free, or solid-phase conditions. J Org Chem 71:5897–5905. doi:10.​1021/​jo060450v CrossRef PubMed
    44.Attanasi OA, Crescentini LD, Filippone P, Mantellini F, Santeusanio S (2003) Improved synthesis of substituted quinoxalines from new N=N-polymerbound 1,2-diaza-1,3-butadienes. Synlett 2003:1183–1185. doi:10.​1055/​s-2003-39886
    45.Attanasi OA, Crescentini LD, Filippone P, Mantellini F, Santeusanio S (2001) A new convenient liquid- and solid-phase synthesis of quinoxalines from \((E)\) -3-diazenylbut-2-enes. Helv Chim Acta 84:2379–2386
    46.Okumura S, Takeda Y, Kiyokawa K, Minakata S (2013) Hypervalent iodine(III)-induced oxidative [4+2] annulation of o-phenylenediamines and electron-deficient alkynes: direct synthesis of quinoxalines from alkyne substrates under metal-free conditions. Chem Commun 49:9266–9268. doi:10.​1039/​C3CC45369C CrossRef
    47.Sagadevan A, Ragupathi A, Hwang KC (2013) Visible-light-induced, copper(I)-catalysed C–N coupling between o-phenylenediamine and terminal alkynes: one-pot synthesis of 3-phenyl-2-hydroxy-quinoxalines. Photochem Photobiol Sci 12:2110–2118. doi:10.​1039/​c3pp50186h CrossRef PubMed
    48.Wang Y, Shi F, Yao X-X, Sun M, Dong L, Tu S-J (2014) Catalytic asymmetric construction of 3,3\(^{\prime }\) -spirooxindoles fused with seven-membered rings by enantioselective tandem reactions. Chem Eur J 20:15047–15052. doi:10.​1002/​chem.​201403868 CrossRef PubMed
    49.Hunter DH, Barton DHR, Motherwell WJ (1984) Oxoammonium salts as oxidizing agents: 2,2,6,6-tetramethyl-1-oxopiperidinium chloride. Tetrahedron Lett 25:603–606. doi:10.​1016/​S0040-4039(00)99949-0 CrossRef
    50.Feng P, Song S, Zhang L-H, Jiao N (2014) CAN-catalyzed rapid C–O bond formation towards \(\alpha \) -aminoxylation of ketones. Synlett 25:2717–2720. doi:10.​1055/​s-0034-1379102 CrossRef
    51.Yan JW, Ni TJ, Yan FL, Zhang JX, Zhuang FF (2015) Friedel–Crafts reaction of indoles with vicinal tricarbonyl compounds generated in situ from 1,3-dicarbonyl compounds and TEMPO: highly selective synthesis of tertiary alcohols. RSC Adv 5:89906–89910. doi:10.​1039/​C5RA17383C CrossRef
  • 作者单位:Jianwei Yan (1) (2)
    Yanhong Xu (2)
    Fangfang Zhuang (2)
    Jie Tian (2)
    Guisheng Zhang (1)

    1. Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, Henan, People’s Republic of China
    2. School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, Henan, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Polymer Sciences
    Organic Chemistry
    Pharmacy
  • 出版者:Springer Netherlands
  • ISSN:1573-501X
文摘
Simple and efficient synthetic procedures for the preparation of quinoxaline, pyrazine, pyridopyrazine, and benzoxazin-2-one derivatives were developed. The one-pot cascade process involves the acidic elimination of \(\alpha \)-aminoxylated dicarbonyl compounds to generate 1,2,3-tricarbonyl compounds and subsequent condensation with 1,4-N,N or -N,O dinucleophiles to afford quinoxaline, pyrazine, pyridopyrazine, and benzoxazin-2-one scaffolds. All the proposed processes do not need extra catalysts, dry solvents, or harsh reaction conditions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700