用户名: 密码: 验证码:
Multi-objective optimal design of high frequency probe for scanning ion conductance microscopy
详细信息    查看全文
  • 作者:Renfei Guo ; Jian Zhuang ; Li Ma ; Fei Li…
  • 关键词:scanning ion conductance microscopy(SICM) ; multi ; objective optimization ; high frequency probe ; finite element analysis ; imaging quality
  • 刊名:Chinese Journal of Mechanical Engineering
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:29
  • 期:1
  • 页码:195-203
  • 全文大小:1,956 KB
  • 参考文献:[1]HANSMA P K, DRAKE B, MARTI O, et al. The scanning ion-conductance microscope[J]. Science, 1989, 243(4891): 641–643.CrossRef
    [2]ANDO T. High-speed AFM imaging[J]. Current Opinion in Structural Biology, 2014, 28: 63–68.CrossRef
    [3]USHIKI T, NAKAJIMA M, CHOI M, et al. Scanning ion conductance microscopy for imaging biological samples in liquid: a comparative study with atomic force microscopy and scanning electron microscopy[J]. Micron, 2012, 43(12): 1390–1398.CrossRef
    [4]SOKOLOVA V, LUDWIG A, HORNUNG S, et al. Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy[J]. Colloids and Surfaces B: Biointerfaces, 2011, 87(1): 146–150.CrossRef
    [5]KORCHEV Y E, MILOVANOVIC M, BASHFORD C L, et al. Specialized scanning ion-conductance microscope for imaging of living cells[J]. Journal of Microscopy, 1997, 188(1): 17–23.CrossRef
    [6]SHEVCHUK A I, GORELIK J, HARDING S E, et al. Simultaneous measurement of Ca2+ and cellular dynamics: combined scanning ion conductance and optical microscopy to study contracting cardiac myocytes[J]. Biophysical Journal, 2001, 81(3): 1759–1764.CrossRef
    [7]PASTRE D, IWAMOTO H, LIU J, et al. Characterization of AC mode scanning ion-conductance microscopy[J]. Ultramicroscopy, 2001, 90(1): 13–19.CrossRef
    [8]LI C, JOHNSON N, OSTANIN V, et al. High resolution imaging using scanning ion conductance microscopy with improved distance feedback control[J]. Progress in Natural Science, 2008, 18(6): 671–677.CrossRef
    [9]NOVAK P, LI C, SHEVCHUK A I, et al. Nanoscale live-cell imaging using hopping probe ion conductance microscopy[J]. Nature Methods, 2009, 6(4): 279–281.CrossRef
    [10]HAPPEL P, DIETZEL I D. Backstep scanning ion conductance microscopy as a tool for long term investigation of single living cells[J]. Journal of Nanobiotechnology, 2009, 7(7): 7.CrossRef
    [11]TAKAHASHI Y, MURAKAMI Y, NAGAMINE K, et al. Topographic imaging of convoluted surface of live cells by scanning ion conductance microscopy in a standing approach mode[J]. Physical Chemistry Chemical Physics, 2010, 12(34): 10012–10017.CrossRef
    [12]HAPPEL P, THATENHORST D, DIETZEL I D. Scanning ion conductance microscopy for studying biological samples[J]. Sensors, 2012, 12(11): 14983–15008.CrossRef
    [13]LIPSON A L, GINDER R S, HERSAM M C. Nanoscale in situ characterization of Li-ion battery electrochemistry via scanning ion conductance microscopy[J]. Advanced Materials, 2011, 23(47): 5613–5617.CrossRef
    [14]CHEN C, ZHOU Y, BAKER L A. Single nanopore investigations with ion conductance microscopy[J]. ACS Nano, 2011, 5(10): 8404–8411.CrossRef
    [15]LIU S, LI Q, SHAO Y. Electrochemistry at micro- and nanoscopic liquid/liquid interfaces[J]. Chemical Society Reviews, 2011, 40(5): 2236–2253.CrossRef
    [16]KLENERMAN D, SHEVCHUK A, NOVAK P, et al. Imaging the cell surface and its organization down to the level of single molecules[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368(1611): 20120027.CrossRef
    [17]RHEINLAENDER J, SCHAEFFER T E. Mapping the mechanical stiffness of live cells with the scanning ion conductance microscope[J]. Soft Matter, 2013, 9(12): 3230–3236.CrossRef
    [18]SCHAFFER T E. Nanomechanics of molecules and living cells with scanning ion conductance microscopy[J]. Analytical Chemistry, 2013, 85(15): 6988–6994.CrossRef
    [19]RHEINLAENDER J, VOGEL S, SEIFERT J, et al. Imaging the elastic modulus of human platelets during thrombin-induced activation using scanning ion conductance microscopy[J]. Thromb Haemost, 2015, 113(2): 305–311.CrossRef
    [20]MCKELVEY K, KINNEAR S L, PERRY D, et al. Surface charge mapping with a nanopipette[J]. Journal of the American Chemical Society, 2014, 136(39): 13735–13744.CrossRef
    [21]NASHIMOTO Y, TAKAHASHI Y, IDA H, et al. Nanoscale imaging of an unlabeled secretory protein in living cells using scanning ion conductance microscopy[J]. Analytical Chemistry, 2015, 87(5): 2542–2545.CrossRef
    [22]IVANOV A P, ACTIS P, JÖNSSON P, et al. On-demand delivery of single DNA molecules using nanopipets[J]. ACS Nano, 2015, 9(4): 3587–3595.CrossRef
    [23]GHORBEL S. Couplage électromécanique effectif dans les structures piézoélectriques expérimentations, simulations et corrélations[D]. Châtenay-Malabry, Hauts-de-Seine: École Centrale Paris, 2009.
    [24]XIA H, ZHUANG J, YU D. Novel soft subspace clustering with multi-objective evolutionary approach for high-dimensional data[J]. Pattern Recognition, 2013, 46(9): 2562–2575.CrossRef
    [25]ELSAMADISI P, WANG Y, VELMURUGAN J, et al. Polished nanopipets: new probes for high-resolution scanning electrochemical microscopy[J]. Analytical Chemistry, 2011, 83(3): 671–673.CrossRef
    [26]MALBOUBI M, GU Y, JIANG K. Surface properties of glass micropipettes and their effect on biological studies[J]. Nanoscale Research Letters, 2011, 6(1): 1–10.CrossRef
    [27]LIU S, DONG Y, ZHAO W, et al. Studies of ionic current rectification using polyethyleneimines coated glass nanopipettes[J]. Analytical Chemistry, 2012, 84(13): 5565–5573.CrossRef
    [28]CALDWELL M, DEL LINZ S J L, SMART T G, et al. Method for estimating the tip geometry of scanning ion conductance microscope pipets[J]. Analytical Chemistry, 2012, 84(21): 8980–8984.
    [29]YE X, DING Y, DUAN Y, et al. Room-temperature capillary-imprint lithography for making micro-/nanostructures in large areas[J]. Journal of Vacuum Science & Technology B, 2010, 28(1): 138–142.CrossRef
    [30]YANG X, LIU X, LU H, et al. Real-time investigation of acute toxicity of ZnO nanoparticles on human lung epithelia with hopping probe ion conductance microscopy[J]. Chemical Research in Toxicology, 2012, 25(2): 297–304.CrossRef
    [31]LIN X, O’MALLEY H, CHEN C, et al. Scn1b deletion leads to increased tetrodotoxin-sensitive sodium current, altered intracellular calcium homeostasis and arrhythmias in murine hearts[J]. The Journal of physiology, 2015, 593(6): 1389–1407.CrossRef
    [32]NIKOLAEV V O, MOSHKOV A, LYON A R, et al. ß2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation[J]. Science, 2010, 327(5973): 1653–1657.CrossRef
    [33]BHARGAVA A, LIN X, NOVAK P, et al. Super-resolution scanning patch clamp reveals clustering of functional ion channels in adult ventricular myocyte[J]. Circulation Research, 2013, 112(8): 1112–1120.CrossRef
    [34]BRUCKBAUER A, YING L, ROTHERY A M, et al. Writing with DNA and protein using a nanopipet for controlled delivery[J]. Journal of the American Chemical Society, 2002, 124(30): 8810–8811.CrossRef
    [35]BABAKINEJAD B, JONSSON P, LOPEZ C A, et al. Local delivery of molecules from a nanopipette for quantitative receptor mapping on live cells[J]. Analytical Chemistry, 2013, 85(19): 9333–9342.CrossRef
    [36]OZAWA T, ITO Y, NAGAI M, et al. Electrokinetic intracellular delivery combined with vibration-assisted cell membrane perforation[C]//IEEE International Symposium on Micro-Nano Mechatronics and Human Science(MHS), Nagoya, Japan, November 10–13, 2013: 1–4.
  • 作者单位:Renfei Guo (1)
    Jian Zhuang (1)
    Li Ma (2) (3)
    Fei Li (2) (3)
    Dehong Yu (1)

    1. School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, 710049, China
    2. School of Science, Xi’an Jiaotong University, Xi’an, 710049, China
    3. Bioinspired Engineering and Biomechanics Center(BEBC), Xi’an Jiaotong University, Xi’an, 710049, China
  • 刊物主题:Mechanical Engineering; Theoretical and Applied Mechanics; Manufacturing, Machines, Tools; Engineering Thermodynamics, Heat and Mass Transfer; Power Electronics, Electrical Machines and Networks; Electronics and Microelectronics, Instrumentation;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2192-8258
文摘
Scanning ion conductance microscopy(SICM) is an emerging non-destructive surface topography characterization apparatus with nanoscale resolution. However, the low regulating frequency of probe in most existing modulated current based SICM systems increases the system noise, and has difficulty in imaging sample surface with steep height changes. In order to enable SICM to have the capability of imaging surfaces with steep height changes, a novel probe that can be used in the modulated current based hopping mode is designed. The design relies on two piezoelectric ceramics with different travels to separate position adjustment and probe frequency regulation in the Z direction. To further improve the resonant frequency of the probe, the material and the key dimensions for each component of the probe are optimized based on the multi-objective optimization method and the finite element analysis. The optimal design has a resonant frequency of above 10 kHz. To validate the rationality of the designed probe, microstructured grating samples are imaged using the homebuilt modulated current based SICM system. The experimental results indicate that the designed high frequency probe can effectively reduce the spike noise by 26% in the average number of spike noise. The proposed design provides a feasible solution for improving the imaging quality of the existing SICM systems which normally use ordinary probes with relatively low regulating frequency. Keywords scanning ion conductance microscopy(SICM) multi-objective optimization high frequency probe finite element analysis imaging quality

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700