用户名: 密码: 验证码:
Transcriptomic analysis of hepatic responses to testosterone deficiency in miniature pigs fed a high-cholesterol diet
详细信息    查看全文
  • 作者:Zhaowei Cai (1)
    Xiaoling Jiang (2)
    Yongming Pan (1)
    Liang Chen (1)
    Lifan Zhang (3)
    Keyan Zhu (1)
    Yueqin Cai (1)
    Yun Ling (1)
    Fangming Chen (1)
    Xiaoping Xu (1)
    Minli Chen (1)

    1. Laboratory Animal Research Center
    ; Zhejiang Chinese Medical University ; Hangzhou ; 310053 ; China
    2. Department of Cancer Genetics
    ; Roswell Park Cancer Institute ; Elm and Carlton Streets ; Buffalo ; NY ; 14263 ; USA
    3. College of Animal Science
    ; Nanjing Agricultural University ; Nanjing ; 310058 ; China
  • 关键词:Testosterone ; Nonalcoholic fatty liver disease ; Hepatic steatosis ; Miniature pigs ; RNA ; Seq
  • 刊名:BMC Genomics
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:16
  • 期:1
  • 全文大小:3,832 KB
  • 参考文献:1. Rao PM, Kelly DM, Jones TH. Testosterone and insulin resistance in the metabolic syndrome and T2DM in men. Nat Rev Endocrinol. 2013;9(8):479鈥?3. CrossRef
    2. Sumiyoshi M, Sakanaka M, Kimura Y. Chronic intake of a high-cholesterol diet resulted in hepatic steatosis, focal nodular hyperplasia and fibrosis in non-obese mice. Br J Nutr. 2010;103(3):378鈥?5. CrossRef
    3. Volzke H, Aumann N, Krebs A, Nauck M, Steveling A, Lerch MM, et al. Hepatic steatosis is associated with low serum testosterone and high serum DHEAS levels in men. Int J Androl. 2010;33(1):45鈥?3. CrossRef
    4. Kim S, Kwon H, Park JH, Cho B, Kim D, Oh SW, et al. A low level of serum total testosterone is independently associated with nonalcoholic fatty liver disease. BMC Gastroenterol. 2012;12:69. CrossRef
    5. Hua X, Sun Y, Zhong Y, Feng W, Huang H, Wang W, et al. Low serum sex hormone-binding globulin is associated with nonalcoholic fatty liver disease in type 2 diabetic patients. Clin Endocrinol (Oxf). 2014;80(6):877鈥?3. CrossRef
    6. Senmaru T, Fukui M, Okada H, Mineoka Y, Yamazaki M, Tsujikawa M, et al. Testosterone deficiency induces markedly decreased serum triglycerides, increased small dense LDL, and hepatic steatosis mediated by dysregulation of lipid assembly and secretion in mice fed a high-fat diet. Metabolism. 2013;62(6):851鈥?0. CrossRef
    7. Kelly DM, Nettleship JE, Akhtar S, Muraleedharan V, Sellers DJ, Brooke JC, et al. Testosterone suppresses the expression of regulatory enzymes of fatty acid synthesis and protects against hepatic steatosis in cholesterol-fed androgen deficient mice. Life Sci. 2014;109(2):95鈥?03. CrossRef
    8. Kamada Y, Kiso S, Yoshida Y, Chatani N, Kizu T, Hamano M, et al. Estrogen deficiency worsens steatohepatitis in mice fed high-fat and high-cholesterol diet. Am J Physiol Gastrointest Liver Physiol. 2011;301(6):G1031鈥?3. CrossRef
    9. Subramanian S, Goodspeed L, Wang S, Kim J, Zeng L, Ioannou GN, et al. Dietary cholesterol exacerbates hepatic steatosis and inflammation in obese LDL receptor-deficient mice. J Lipid Res. 2011;52(9):1626鈥?5. CrossRef
    10. Kim EJ, Kim BH, Seo HS, Lee YJ, Kim HH, Son HH, et al. Cholesterol-induced non-alcoholic fatty liver disease and atherosclerosis aggravated by systemic inflammation. PLoS One. 2014;9(6):e97841. CrossRef
    11. Hatch NW, Srodulski SJ, Chan HW, Zhang X, Tannock LR, King VL. Endogenous androgen deficiency enhances diet-induced hypercholesterolemia and atherosclerosis in low-density lipoprotein receptor-deficient mice. Gend Med. 2012;9(5):319鈥?8. CrossRef
    12. Kapoor D, Goodwin E, Channer KS, Jones TH. Testosterone replacement therapy improves insulin resistance, glycaemic control, visceral adiposity and hypercholesterolaemia in hypogonadal men with type 2 diabetes. Eur J Endocrinol. 2006;154(6):899鈥?06. CrossRef
    13. Zhang N, Zhang H, Zhang X, Zhang B, Wang F, Wang C, et al. The relationship between endogenous testosterone and lipid profile in middle-aged and elderly Chinese men. Eur J Endocrinol. 2014;170(4):487鈥?4. CrossRef
    14. Lin HY, Yu IC, Wang RS, Chen YT, Liu NC, Altuwaijri S, et al. Increased hepatic steatosis and insulin resistance in mice lacking hepatic androgen receptor. Hepatology. 2008;7(6):1924鈥?5. CrossRef
    15. Zhang H, Liu Y, Wang L, Li Z, Zhang H, Wu J, et al. Differential effects of estrogen/androgen on the prevention of nonalcoholic fatty liver disease in the male rat. J Lipid Res. 2013;54(2):345鈥?7. CrossRef
    16. Lee L, Alloosh M, Saxena R, Van Alstine W, Watkins BA, Klaunig JE, et al. Nutritional model of steatohepatitis and metabolic syndrome in the Ossabaw miniature swine. Hepatology. 2009;50(1):56鈥?7. CrossRef
    17. Bell LN, Lee L, Saxena R, Bemis KG, Wang M, Theodorakis JL, et al. Serum proteomic analysis of diet-induced steatohepatitis and metabolic syndrome in the Ossabaw miniature swine. Am J Physiol Gastrointest Liver Physiol. 2010;298(5):G746鈥?4. CrossRef
    18. Vlaardingerbroek H, Ng K, Stoll B, Benight N, Chacko S, Kluijtmans LA, et al. New generation lipid emulsions prevent PNALD in chronic parenterally fed preterm pigs. J Lipid Res. 2014;55(3):466鈥?7. CrossRef
    19. Yao YC, Cai ZW, Zhao CJ, Wu KL, Wu CX, Han WP, et al. Influence of castration-induced sex hormone deficiency on serum lipid levels and the genes expression in male pigs. Horm Metab Res. 2011;43(10):674鈥?0. CrossRef
    20. Christoffersen BO, Gade LP, Golozoubova V, Svendsen O, Raun K. Influence of castration-induced testosterone and estradiol deficiency on obesity and glucose metabolism in male Gottingen minipigs. Steroids. 2010;75(10):676鈥?4. CrossRef
    21. Zeng J, He X, Wu D, Zhu B, Cai S, Nadira UA, et al. Comparative transcriptome profiling of two Tibetan wild barley genotypes in responses to low potassium. PLoS One. 2014;9(6):e100567. CrossRef
    22. Wang L, Feng Z, Wang X, Wang X, Zhang X. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics. 2010;26(1):136鈥?. CrossRef
    23. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57(1):289鈥?00.
    24. Song HK, Hong SE, Kim T, Kim do H. Deep RNA sequencing reveals novel cardiac transcriptomic signatures for physiological and pathological hypertrophy. PLoS One. 2012;7(4):e35552. CrossRef
    25. Ernst J, Bar-Joseph Z. STEM: a tool for the analysis of short time series gene expression data. BMC Bioinformatics. 2006;7:191. CrossRef
    26. Nikolaenko L, Jia Y, Wang C, Diaz-Arjonilla M, Yee JK, French SW, et al. Testosterone replacement ameliorates nonalcoholic fatty liver disease in castrated male rats. Endocrinology. 2014;155(2):417鈥?8. CrossRef
    27. Mersmann HJ. Effect of sex on lipogenic activity in swine adipose tissue. J Anim Sci. 1984;58:600鈥?.
    28. Lu G, Shimizu I, Cui X, Itonaga M, Tamaki K, Fukuno H, et al. Antioxidant and antiapoptotic activities of idoxifene and estrodiol in hepatic fibrosis in rats. Life Sci. 2004;74(7):891鈥?07. CrossRef
    29. Allan CA. Sex steroids and glucose metabolism. Asian J Andro. 2014;16:232鈥?. CrossRef
    30. Traish AM. Adverse health effects of testosterone deficiency (TD) in men. Steroids. 2014;88:106鈥?6. CrossRef
    31. Yassin DJ, Doros G, Hammerer PG, Yassin AA. Long-term testosterone treatment in elderly men with hypogonadism and erectile dysfunction reduces obesity parameters and improves metabolic syndrome and health-related quality of life. J Sex Med. 2014;11(6):1567鈥?6. CrossRef
    32. Yeap BB, Chubb SA, Hyde Z, Jamrozik K, Hankey GJ, Flicker L, et al. Lower serum testosterone is independently associated with insulin resistance in non-diabetic older men: the health in men study. Eur J Endocrinol. 2009;161:591鈥?. CrossRef
    33. Gopal RA, Bothra N, Acharya SV, Ganesh HK, Bandgar TR, Menon PS, et al. Treatment of hypogonadism with testosterone in patients with type 2 diabetes mellitus. Endocr Pract. 2010;16(4):570鈥?. CrossRef
    34. Gianatti EJ, Dupuis P, Hoermann R, Strauss BJ, Wentworth JM, Zajac JD, et al. Effect of testosterone treatment on glucose metabolism in men with type 2 diabetes: a randomized controlled trial. Diabetes Care. 2014;37(8):2098鈥?07. CrossRef
    35. Christoffersen B, Raun K, Svendsen O, Fledelius C, Golozoubova V. Evaluation of the castrated male Sprague鈥揇awley rat as a model of the metabolic syndrome and type 2 diabetes. Int J Obes (Lond). 2006;30(8):1288鈥?7. CrossRef
    36. Inoue T, Zakikhani M, David S, Algire C, Blouin MJ, Pollak M. Effects of castration on insulin levels and glucose tolerance in the mouse differ from those in man. Prostate. 2010;70(15):1628鈥?5. CrossRef
    37. Rector RS, Thyfault JP, Uptergrove GM, Morris EM, Naples SP, Borengasser SJ, et al. Mitochondrial dysfunction precedes insulin resistance and hepatic steatosis and contributes to the natural history of non-alcoholic fatty liver disease in an obese rodent model. J Hepatol. 2010;52(5):727鈥?6. CrossRef
    38. Xie Z, Li H, Wang K, Lin J, Wang Q, Zhao G, et al. Analysis of transcriptome and metabolome profiles alterations in fatty liver induced by high-fat diet in rat. Metabolism. 2010;59(4):554鈥?0. CrossRef
    39. Roberts LD, Hassall DG, Winegar DA, Haselden JN, Nicholls AW, Griffin JL. Increased hepatic oxidative metabolism distinguishes the action of Peroxisome proliferator-activated receptor delta from Peroxisome proliferator-activated receptor gamma in the ob/ob mouse. Genome Med. 2009;1(12):115. CrossRef
    40. Liu S, Hatano B, Zhao M, Yen CC, Kang K, Reilly SM, et al. Role of peroxisome proliferator-activated receptor {delta}/{beta} in hepatic metabolic regulation. J Biol Chem. 2011;286(2):1237鈥?7. CrossRef
    41. Barroso E, Rodriguez-Calvo R, Serrano-Marco L, Astudillo AM, Balsinde J, Palomer X, et al. The PPARbeta/delta activator GW501516 prevents the down-regulation of AMPK caused by a high-fat diet in liver and amplifies the PGC-1alpha-Lipin 1-PPARalpha pathway leading to increased fatty acid oxidation. Endocrinology. 2011;152(5):1848鈥?9. CrossRef
    42. Bojic LA, Telford DE, Fullerton MD, Ford RJ, Sutherland BG, Edwards JY, et al. PPARdelta activation attenuates hepatic steatosis in Ldlr鈭?鈭?mice by enhanced fat oxidation, reduced lipogenesis, and improved insulin sensitivity. J Lipid Res. 2014;55(7):1254鈥?6. CrossRef
    43. Lee CH, Olson P, Hevener A, MehI I, Chong LW, Olefsky JM, et al. PPARdelta regulates glucose metabolism and insulin sensitivity. Proc Natl Acad Sci USA. 2006;103(9):3444鈥?. CrossRef
    44. Wu HT, Chen CT, Cheng KC, Li YX, Yeh CH, Cheng JT. Pharmacological activation of peroxisome proliferator-activated receptor 未 improves insulin resistance and hepatic steatosis in high-fat diet-induced diabetic mice. Horm Metab Res. 2011;43(9):631鈥?. CrossRef
    45. Winzell MS, Wulff EM, Olsen GS, Sauerberg P, Gotfredsen CF, Ahr茅n B. Improved insulin sensitivity and islet function after PPARdelta activation in diabetic db/db mice. Eur J Pharmacol. 2010;626(2鈥?):297鈥?05. CrossRef
    46. Sanderson LM, Boekschoten MV, Desvergne B, M眉ller M, Kersten S. Transcriptional profiling reveals divergent roles of PPARalpha and PPARbeta/delta in regulation of gene expression in mouse liver. Physiol Genomics. 2010;41(1):42鈥?2. CrossRef
    47. Dimopoulos N, Watson M, Green C, Hundal HS. The PPARdelta agonist, GW501516, promotes fatty acid oxidation but has no direct effect on glucose utilization or insulin sensitivity in rat L6 skeletal muscle cells. FEBS Lett. 2007;581(24):4743鈥?. CrossRef
    48. Cresser J, Bonen A, Chabowski A, Stefanyk LE, Gulli R, Ritchie I, et al. Oral administration of a PPAR-delta agonist to rodents worsens, not improves, maximal insulin-stimulated glucose transcript in skeletal muscle of different fibers. Am J Physiol Regul Integr Comp Physiol. 2010;299(2):R470鈥?. CrossRef
    49. Ye JM, Tid-Ang J, Turner N, Zeng XY, Li HY, Cooney GJ, et al. PPAR未 agonists have opposing effects on insulin resistance in high fat-fed rats and mice due to different metabolic responses in muscle. Br J Pharmacol. 2011;163(3):556鈥?6. CrossRef
    50. Monsenego J, Mansouri A, Akkaoui M, Lenoir V, Esnous C, Fauveau V, et al. Enhancing liver mitochondrial fatty acid oxidation capacity in obese mice improves insulin sensitivity independently of hepatic steatosis. J Hepatol. 2012;56(3):632鈥?. CrossRef
    51. Host C, Gormsen LC, Christensen B, Jessen N, Hougaard DM, Christiansen JS, et al. Independent effects of testosterone on lipid oxidation and VLDL-TG production: a randomized, double-blind, placebo-controlled, crossover study. Diabetes. 2013;62(5):1409鈥?6. CrossRef
    52. Weng H, Ji X, Naito Y, Endo K, Ma X, Takahashi R, et al. Pex11alpha deficiency impairs peroxisome elongation and division and contributes to nonalcoholic fatty liver in mice. Am J Physiol Endocrinol Metab. 2013;304(2):E187鈥?6. CrossRef
    53. Ren LP, Chan SM, Zeng XY, Laybutt DR, Iseli TJ, Sun RQ, et al. Differing endoplasmic reticulum stress response to excess lipogenesis versus lipid oversupply in relation to hepatic steatosis and insulin resistance. PLoS One. 2012;7(2):e30816. CrossRef
    54. Peterson JM, Seldin MM, Wei Z, Aja S, Wong GW. CTRP3 attenuates diet-induced hepatic steatosis by regulating triglyceride metabolism. Am J Physiol Gastrointest Liver Physiol. 2013;305(3):G214鈥?4. CrossRef
    55. Linden D, William-Olsson L, Ahnmark A, Ekroos K, Hallberg C, Sjogren HP, et al. Liver-directed overexpression of mitochondrial glycerol-3-phosphate acyltransferase results in hepatic steatosis, increased triacylglycerol secretion and reduced fatty acid oxidation. FASEB J. 2006;20(3):434鈥?3. CrossRef
    56. Villanueva CJ, Monetti M, Shih M, Zhou P, Watkins SM, Bhanot S, et al. Specific role for acyl CoA:Diacylglycerol acyltransferase 1 (Dgat1) in hepatic steatosis due to exogenous fatty acids. Hepatology. 2009;50(2):434鈥?2. CrossRef
    57. Kohjima M, Enjoji M, Higuchi N, Kato M, Kotoh K, Yoshimoto T, et al. Re-evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease. Int J Mol Med. 2007;20(3):351鈥?.
    58. Neschen S, Morino K, Hammond LE, Zhang D, Liu ZX, Romanelli AJ, et al. Prevention of hepatic steatosis and hepatic insulin resistance in mitochondrial acyl-CoA:glycerol-sn-3-phosphate acyltransferase 1 knockout mice. Cell Metab. 2005;2(1):55鈥?5. CrossRef
    59. Miyazaki M, Kim YC, Ntambi JM. A lipogenic diet in mice with a disruption of the stearoyl-CoA desaturase 1 gene reveals a stringent requirement of endogenous monounsaturated fatty acids for triglyceride synthesis. J Lipid Res. 2001;42(7):1018鈥?4.
    60. Wakil SJ, Abu-Elheiga LA. Fatty acid metabolism: target for metabolic syndrome. J Lipid Res. 2009;50(Suppl):S138鈥?3.
    61. Xiao J, Xing F, Huo J, Fung ML, Liong EC, Ching YP, et al. Lycium barbarum polysaccharides therapeutically improve hepatic functions in non-alcoholic steatohepatitis rats and cellular steatosis model. Sci Rep. 2014;4:5587.
    62. Obstfeld AE, Sugaru E, Thearle M, Francisco AM, Gayet C, Ginsberg HN, et al. C-C chemokine receptor 2 (CCR2) regulates the hepatic recruitment of myeloid cells that promote obesity-induced hepatic steatosis. Diabetes. 2010;59(4):916鈥?5. CrossRef
    63. Bertola A, Bonnafous S, Anty R, Patouraux S, Saint-Paul MC, Iannelli A, et al. Hepatic expression patterns of inflammatory and immune response genes associated with obesity and NASH in morbidly obese patients. PLoS One. 2010;5(10):e13577. CrossRef
    64. Palmer C, Corpuz T, Guirguis M, O鈥橳oole S, Yan K, Bu Y, et al. The effect of obesity on intrahepatic cytokine and chemokine expression in chronic hepatitis C infection. Gut. 2010;59(3):397鈥?04. CrossRef
    65. Kirpich IA, Gobejishvili LN, Bon Homme M, Waigel S, Cave M, Arteel G, et al. Integrated hepatic transcriptome and proteome analysis of mice with high-fat diet-induced nonalcoholic fatty liver disease. J Nutr Biochem. 2011;22(1):38鈥?5. CrossRef
    66. Estep JM, Baranova A, Hossain N, Elariny H, Ankrah K, Afendy A, et al. Expression of cytokine signaling genes in morbidly obese patients with non-alcoholic steatohepatitis and hepatic fibrosis. Obes Surg. 2009;19(5):617鈥?4. CrossRef
    67. Li J, Gao J, Yan D, Yuan Y, Sah S, Satyal U, et al. Neutralization of chemokine CXCL14 (BRAK) expression reduces CCl4 induced liver injury and steatosis in mice. Eur J Pharmacol. 2011;671(1鈥?):120鈥?. CrossRef
    68. Zhang X, Shen J, Man K, Chu ES, Yau TO, Sung JC, et al. CXCL10 plays a key role as an inflammatory mediator and a non-invasive biomarker of non-alcoholic steatohepatitis. J Hepatol. 2014;61(6):1365鈥?5. CrossRef
    69. Dela Pena A, Leclercq I, Field J, George J, Jones B, Farrell G. NF-kappaB activation, rather than TNF, mediates hepatic inflammation in a murine dietary model of steatohepatitis. Gastroenterology. 2005;129(5):1663鈥?4. CrossRef
    70. Deng QG, She H, Cheng JH, French SW, Koop DR, Xiong S, et al. Steatohepatitis induced by intragastric overfeeding in mice. Hepatology. 2005;42(4):905鈥?4. CrossRef
    71. Nagasawa T, Inada Y, Nakano S, Tamura T, Takahashi T, Maruyama K, et al. Effects of bezafibrate, PPAR pan-agonist, and GW501516, PPARdelta agonist, on development of steatohepatitis in mice fed a methionine- and choline-deficient diet. Eur J Pharmacol. 2006;536(1鈥?):182鈥?1. CrossRef
    72. Lim HJ, Park JH, Lee S, Choi HE, Lee KS, Par HY. PPARdelta ligand L-165041 ameliorates western diet-induced hepatic lipid accumulation and inflammation in LDLR鈭?鈭?mice. Eur J Pharmacol. 2009;622(1鈥?):45鈥?1. CrossRef
    73. Pennell LM, Galligan GL, Fish EN. Sex affects immunity. J Autoimmun. 2012;38(2鈥?):282鈥?1. CrossRef
    74. Furman D, Hejblum BP, Simon N, Jojic V, Dekker CL, Thi茅baut R, et al. Systems analysis of sex differences reveals an immunosuppressive role for testosterone in the response to influenza vaccination. Proc Natl Acad U S A. 2014;111(2):868鈥?4. CrossRef
    75. Olsen NJ, Kovacs WJ. Gonadal steroids and immunity. Endocr Rev. 1996;17(4):369鈥?4.
    76. Uchiyama S, Shimizu T, Shirasawa T. CuZn-SOD deficiency causes ApoB degradation and induces hepatic lipid accumulation by impaired lipoprotein secretion in mice. J Bio Chem. 2006;281(42):31713鈥?. CrossRef
    77. Abdelmegeed MA, Banerjee A, Yoo SH, Jang S, Gonzalez FJ, Song BJ. Critical role of cytochrome P450 2E1 (CYP2E1) in the development of high fat-induced non-alcoholic steatohepatitis. J Hepatol. 2012;57(4):860鈥?. CrossRef
    78. Zong H, Armoni M, Harel C, Karnieli E, Pessin JE. Cytochrome P-450 CYP2E1 knockout mice are protected against high-fat diet-induced obesity and insulin resistance. Am J Physiol Endocrinol Metab. 2012;302(5):E532鈥?. CrossRef
    79. Niemela O, Parkkila S, Pasanen M, Viitala K, Villanueva JA, Halsted CH. Induction of cytochrome P450 enzymes and generation of protein-aldehyde adducts are associated with sex-dependent sensitivity to alcohol-induced liver disease in micropigs. Hepatology. 1999;30(4):1011鈥?. CrossRef
    80. Tao GZ, Lehwald N, Jang KY, Baek J, Xu B, Omary MB, et al. Wnt/beta-catenin signaling protects mouse liver against oxidative stress-induced apoptosis through the inhibition of forkhead transcription factor FoxO3. J Biol Chem. 2013;288(24):17214鈥?4. CrossRef
    81. van Eerdenburg FJ, Lugard-Kok CM, Dieleman SJ, Bevers MM, Swaab DF. Influence of gonadectomy and testosterone supplementation on the postnatal development of the vasopressin and oxytocin-containing nucleus of the pig hypothalamus. Neuroendocrinology. 1991;54(6):580鈥?. CrossRef
    82. Kojima M, Sekimoto M, Degawa M. Androgen-mediated down-regulation of CYP1A subfamily genes in the pig liver. J Endocrinol. 2010;207(2):203鈥?1. CrossRef
    83. Khan MA, Earl FL, Farber TM, Miller E, Husain MM, Nelson E, et al. Elevation of serum cholesterol and increased fatty streaking in egg yolk:lard fed castrated miniature pigs. Exp Mol Pathol. 1977;26(1):63鈥?4. CrossRef
    84. Shi Y, Guo R, Wang X, Yuan D, Zhang S, Wang J, et al. The regulation of alfalfa saponin extract on key genes involved in hepatic cholesterol metabolism in hyperlipidemic rats. PLoS One. 2014;9(2):e88282. CrossRef
    85. Peng X, Wood CL, Blalock EM, Chen KC, Landfield PW, Stromberg AJ. Statistical implications of pooling RNA samples for microarray experiments. BMC Bioinformatics. 2003;4:26. CrossRef
    86. Li G, Jia Q, Zhao J, Li X, Yu M, Samuel MS, et al. Dysregulation of genome-wide gene expression and DNA methylation in abnormal cloned piglets. BMC Genomics. 2014;15:811. CrossRef
    87. Ramayo-Caldas Y, Mach N, Esteve-Codina A, Corominas J, Castell贸 A, Ballester M, et al. Liver transcriptome profile in pigs with extreme phenotypes of intramuscular fatty acid composition. BMC Genomics. 2012;13:547. CrossRef
    88. Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25(9):1105鈥?1. CrossRef
    89. Hill-Baskin AE, Markiewski MM, Buchner DA, Shao H, DeSantis D, Hsiao G, et al. Diet-induced hepatocellular carcinoma in genetically predisposed mice. Hum Mol Genet. 2009;18(16):2975鈥?8. CrossRef
    90. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet. 2000;25(1):25鈥?. CrossRef
    91. Wang W, Meng M, Zhang Y, Wei C, Xie Y, Jiang L, et al. Global transcriptome-wide analysis of CIK cells identify distinct roles of IL-2 and IL-15 in acquisition of cytotoxic capacity against tumor. BMC Med Genomics. 2014;7:49. CrossRef
    92. Wheelock CE, Wheelock AM, Kawashima S, Diez D, Kanehisa M, van Erk M, et al. Systems biology approaches and pathway tools for investigating cardiovascular disease. Mol BioSyst. 2009;5(6):588鈥?02. CrossRef
    93. Ehrenkaufer GM, Weedall GD, Williams D, Lorenzi HA, Caler E, Hall N, et al. The genome and transcriptome of the enteric parasite Entamoeba invadens, a model for encystation. Genome Biol. 2013;14(7):R77. CrossRef
    94. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(鈭扗elta Delta C(T)) Method. Methods. 2001;25(4):402鈥?. CrossRef
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Recent studies have indicated that low serum testosterone levels are associated with increased risk of developing hepatic steatosis; however, the mechanisms mediating this phenomenon have not been fully elucidated. To gain insight into the role of testosterone in modulating hepatic steatosis, we investigated the effects of testosterone on the development of hepatic steatosis in pigs fed a high-fat and high-cholesterol (HFC) diet and profiled hepatic gene expression by RNA-Seq in HFC-fed intact male pigs (IM), castrated male pigs (CM), and castrated male pigs with testosterone replacement (CMT). Results Serum testosterone levels were significantly decreased in CM pigs, and testosterone replacement attenuated castration-induced testosterone deficiency. CM pigs showed increased liver injury accompanied by increased hepatocellular steatosis, inflammation, and elevated serum alanine aminotransferase levels compared with IM pigs. Moreover, serum levels of total cholesterol, low-density lipoprotein cholesterol, and triglycerides were markedly increased in CM pigs. Testosterone replacement decreased serum and hepatic lipid levels and improved liver injury in CM pigs. Compared to IM and CMT pigs, CM pigs had lower serum levels of superoxide dismutase but higher levels of malondialdehyde. Gene expression analysis revealed that upregulated genes in the livers of CM pigs were mainly enriched for genes mediating immune and inflammatory responses, oxidative stress, and apoptosis. Surprisingly, the downregulated genes mainly included those that regulate metabolism-related processes, including fatty acid oxidation, steroid biosynthesis, cholesterol and bile acid metabolism, and glucose metabolism. KEGG analysis showed that metabolic pathways, fatty acid degradation, pyruvate metabolism, the tricarboxylic acid cycle, and the nuclear factor-kappaB signaling pathway were the major pathways altered in CM pigs. Conclusions This study demonstrated that testosterone deficiency aggravated hypercholesterolemia and hepatic steatosis in pigs fed an HFC diet and that these effects could be reversed by testosterone replacement therapy. Impaired metabolic processes, enhanced immune and inflammatory responses, oxidative stress, and apoptosis may contribute to the increased hepatic steatosis induced by testosterone deficiency and an HFC diet. These results deepened our understanding of the molecular mechanisms of testosterone deficiency-induced hepatic steatosis and provided a foundation for future investigations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700