用户名: 密码: 验证码:
Molecular cloning and expression analysis of 13 NAC transcription factors in Miscanthus lutarioriparius
详细信息    查看全文
  • 作者:Lu Ji (1)
    Ruibo Hu (2)
    Jianxiong Jiang (1)
    Guang Qi (2)
    Xuanwen Yang (2)
    Ming Zhu (2)
    Chunxiang Fu (2)
    Gongke Zhou (2)
    Zili Yi (1)
  • 关键词:Miscanthus lutarioriparius ; Bioenergy crop ; NAC transcriptional factor ; Expression pattern ; Abiotic stress ; Hormonal treatments
  • 刊名:Plant Cell Reports
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:33
  • 期:12
  • 页码:2077-2092
  • 全文大小:4,040 KB
  • 参考文献:1. Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9:841鈥?57 CrossRef
    2. Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460鈥?479 CrossRef
    3. Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34:W369鈥揥373 CrossRef
    4. Brosse N, Dufour A, Meng XZ,聽Sun QN, Ragauskas A (2012) Miscanthus: a fast-growing crop for biofuels and chemicals production. Biofuels, Bioprod Bioref 6:580鈥?98 CrossRef
    5. Chang SJ, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Report 11:113鈥?16 CrossRef
    6. Chen SL, Renvoize SA (2006) Miscanthus. Flora of China. Science Press, Beijing, pp 581鈥?83
    7. Chen QF, Wang Q, Xiong LZ, Lou ZY (2011) A structural view of the conserved domain of rice stress-responsive NAC1. Protein Cell 2:55鈥?3 CrossRef
    8. Christianson JA, Dennis ES, Llewellyn DJ, Wilson IW (2010) ATAF NAC transcription factors: regulators of plant stress signaling. Plant Signal Behav 5:428鈥?32 CrossRef
    9. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of / Arabidopsis thaliana. Plant J 16:735鈥?43 CrossRef
    10. Delessert C, Kazan K, Wilson IW, Van Der Straeten D, Manners J, Dennis ES, Dolferus R (2005) The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. Plant J 43:745鈥?57 CrossRef
    11. Duval M, Hsieh TF, Kim SY, Thomas TL (2002) Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily. Plant Mol Biol 50:237鈥?48 CrossRef
    12. Earley KW, Haag JR, Pontes O, Opper K, Juehne T, Song K, Pikaard CS (2006) Gateway-compatible vectors for plant functional genomics and proteomics. Plant J 45:616鈥?29 CrossRef
    13. Ernst HA, Olsen AN, Larsen S, Lo Leggio L (2004) Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. EMBO Rep 5:297鈥?03 CrossRef
    14. Finn RD, Mistry J, Schuster-Bockler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R, Eddy SR, Sonnhammer ELL, Bateman A (2006) Pfam: clans, web tools and services. Nucleic Acids Res 34:D247鈥揇251 CrossRef
    15. Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran LS, Yamaguchi-Shinozaki K, Shinozaki K (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J 39:863鈥?76 CrossRef
    16. Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436鈥?42 CrossRef
    17. Guo YF, Gan SS (2006) AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J 46:601鈥?12 CrossRef
    18. Guo HS, Xie Q, Fei JF, Chua NH (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell 17:1376鈥?386 CrossRef
    19. He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44:903鈥?16 CrossRef
    20. Hibara K, Takada S, Tasaka M (2003) CUC1 gene activates the expression of SAM-related genes to induce adventitious shoot formation. Plant J 36:687鈥?96 CrossRef
    21. Hu HH, Dai MQ, Yao JL, Xiao BZ, Li X, Zhang QF, Xiong LZ (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103:12987鈥?2992 CrossRef
    22. Hu HH, You J, Fang YJ, Zhu XY, Qi ZY, Xiong LZ (2008) Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 67:169鈥?81 CrossRef
    23. Hu RB, Qi G, Kong YZ, Kong DJ, Gao Q, Zhou GK (2010) Comprehensive analysis of NAC domain transcription factor gene family in / Populus trichocarpa. BMC Plant Biol 10:145 CrossRef
    24. Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104鈥?06 CrossRef
    25. Jensen MK, Hagedorn PH, de Torres-Zabala M, Grant MR, Rung JH, Collinge DB, Lyngkjaer MF (2008) Transcriptional regulation by an NAC (NAM-ATAF1,2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards / Blumeria graminis f. sp. hordei in Arabidopsis. Plant J 56:867鈥?80 CrossRef
    26. Jung C, Seo JS, Han SW, Koo YJ, Kim CH, Song SI, Nahm BH, Choi YD, Cheong JJ (2008) Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol 146:623鈥?35 CrossRef
    27. Kikuchi K, Ueguchi-Tanaka M, Yoshida KT, Nagato Y, Matsusoka M, Hirano HY (2000) Molecular analysis of the NAC gene family in rice. Mol Genet Genomics 262:1047鈥?051 CrossRef
    28. Le DT, Nishiyama R, Watanabe Y, Mochida K, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2011) Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res 18:263鈥?76 CrossRef
    29. Letunic I, Copley RR, Schmidt S, Ciccarelli FD, Doerks T, Schultz J, Ponting CP, Bork P (2004) SMART 4.0: towards genomic data integration. Nucleic Acids Res 32:D142鈥揇144 CrossRef
    30. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) Method. Methods 25:402鈥?08 CrossRef
    31. Lu PL, Chen NZ, An R, Su Z, Qi BS, Ren F, Chen J, Wang XC (2007) A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. Plant Mol Biol 63:289鈥?05 CrossRef
    32. Lu GJ, Gao CX, Zheng XN, Han B (2009) Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice. Planta 229:605鈥?15 CrossRef
    33. Mao XG, Chen SS, Li A, Zhai CC, Jing RL (2014) Novel NAC transcription factor TaNAC67 confers enhanced multi-abiotic stress tolerances in Arabidopsis. PLoS ONE 9:e84359 CrossRef
    34. Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M (2005) The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. Plant Cell 17:2993鈥?006 CrossRef
    35. Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617鈥?30 CrossRef
    36. Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) NAC transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819:97鈥?03 CrossRef
    37. Narusaka Y, Narusaka M, Seki M, Umezawa T, Ishida J, Nakajima M, Enju A, Shinozaki K (2004) Crosstalk in the responses to abiotic and biotic stresses in Arabidopsis: analysis of gene expression in cytochrome P450 gene superfamily by cDNA microarray. Plant Mol Biol 55:327鈥?42 CrossRef
    38. Nikovics K, Blein T, Peaucelle A, Ishida T, Morin H, Aida M, Laufs P (2006) The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis. Plant Cell 18:2929鈥?945 CrossRef
    39. Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, Ooka H, Kikuchi S (2010) Genome-wide analysis of NAC transcription factor family in rice. Gene 465:30鈥?4 CrossRef
    40. Nuruzzaman M, Sharoni AM, Kikuchi S (2013) Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front Microbiol 4:248 CrossRef
    41. Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashizaki Y, Suzuki K, Kojima K, Takahara Y, Yamamoto K, Kikuchi S (2003) Comprehensive analysis of NAC family genes in / Oryza sativa and / Arabidopsis thaliana. DNA Res 10:239鈥?47 CrossRef
    42. Puranik S, Sahu PP, Mandal SN, VS B, Parida SK, Prasad M (2013) Comprehensive genome-wide survey, genomic constitution and expression profiling of the NAC transcription factor family in foxtail millet ( / Setaria italica L.). PLoS ONE 8:e64594. doi:lus-plus non-url-ref">10.1371/journal.pone.0064594
    43. Shinozaki K, Yamaguchi-Shinozaki K (1997) Gene expression and signal transduction in water-stress response. Plant Physiol 115:327鈥?34 CrossRef
    44. Singh AK, Sharma V, Pal AK, Acharya V, Ahuja PS (2013) Genome-wide organization and expression profiling of the NAC transcription factor family in potato ( / Solanum tuberosum L.). DNA Res 20:403鈥?23 CrossRef
    45. Swaminathan K, Alabady MS, Varala K, De Paoli E, Ho I, Rokhsar DS, Arumuganathan AK, Ming R, Green PJ, Meyers BC, Moose SP, Hudson ME (2010) Genomic and small RNA sequencing of Miscanthus 脳 giganteus shows the utility of sorghum as a reference genome sequence for Andropogoneae grasses. Genome Biol 11:R12 CrossRef
    46. Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K, Nakashima K (2010) The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol Genet Genomics 284:173鈥?83 CrossRef
    47. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731鈥?739 CrossRef
    48. Teige M, Scheikl E, Eulgem T, Doczi R, Ichimura K, Shinozaki K, Dangl JL, Hirt H (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15:141鈥?52 CrossRef
    49. Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481鈥?498 CrossRef
    50. Wang XE, Basnayake BMVS, Zhang HJ, Li GJ, Li W, Virk N, Mengiste T, Song FM (2009) The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens. Mol Plant Microbe In 22:1227鈥?238 CrossRef
    51. Wang N, Zheng Y, Xin HP, Fang LC, Li SH (2013) Comprehensive analysis of NAC domain transcription factor gene family in / Vitis vinifera. Plant Cell Rep 32:61鈥?5 CrossRef
    52. Wu YR, Deng ZY, Lai JB, Zhang YY, Yang CP, Yin BJ, Zhao QZ, Zhang L, Li Y, Yang CW,聽Xie Q (2009) Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res 19:1279鈥?290 CrossRef
    53. Xie Q, Frugis G, Colgan D, Chua NH (2000) Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev 14:3024鈥?036 CrossRef
    54. Xue GP, Way HM, Richardson T, Drenth J, Joyce PA, McIntyre CL (2011) Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat. Mol Plant 4:697鈥?12 CrossRef
    55. Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, Iwabuchi M, Oda K (2009) Tolerance to various environmental stresses conferred by the salt-responsive rice gene ONAC063 in transgenic Arabidopsis. Planta 229:1065鈥?075 CrossRef
    56. Yoo SY, Kim Y, Kim SY, Lee JS, Ahn JH (2007) Control of flowering time and cold response by a NAC-domain protein in Arabidopsis. PLoS ONE 2:e642
    57. Zheng XN, Chen B, Lu GJ, Han B (2009) Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun 379:985鈥?89 CrossRef
  • 作者单位:Lu Ji (1)
    Ruibo Hu (2)
    Jianxiong Jiang (1)
    Guang Qi (2)
    Xuanwen Yang (2)
    Ming Zhu (2)
    Chunxiang Fu (2)
    Gongke Zhou (2)
    Zili Yi (1)

    1. College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, People鈥檚 Republic of China
    2. CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, People鈥檚 Republic of China
  • ISSN:1432-203X
文摘
Key message The 13 MlNAC genes could respond to various abiotic stresses, suggesting their crucial roles in stress response. Overexpression of MlNAC2 in Arabidopsis led to improved drought tolerance. Abstract NAC (NAM, ATAF1/2 and CUC2) proteins are plant-specific transcription factors that play crucial roles in plant development, growth and stress responses. In this study, 13 stress-responsive NAC genes were identified from Miscanthus lutarioriparius. Full-length cDNA sequences were obtained for 11 MlNAC genes, which were phylogenetically classified into six subfamilies. Sequence alignment revealed the highly conserved NAC domain in the N-terminus of these MlNACs, while the C-terminus was highly divergent. We performed quantitative real-time RT-PCR to examine the expression profiles of MlNAC genes in different tissues including root, rhizome, mature stem, young stem, leaf and sheath. The 13 MlNAC genes displayed distinct tissue-specific patterns in six tissues examined. To gain further insight into their roles in response to abiotic stresses, expressions of MlNAC genes were analyzed under different stresses and hormone treatments including salt, drought, cold, wounding, abscisic acid, Methyl jasmonate and salicylic acid. The 13 MlNAC genes could respond to at least five stress treatments, and over 100-fold variations in transcript levels of MlNAC1, MlNAC2, MlNAC4, and MlNAC12 were observed in salt, drought and MeJA treatments, which indicated that MlNACs play crucial roles in stress response. Crosstalk among various abiotic stress and hormone responses was also discussed based on the expression of MlNAC genes. Overexpression of MlNAC2 in Arabidopsis (Col-0) led to improved drought tolerance. The water loss rate was significantly lower, and the recovery rate after a 60-min dehydration stress treatment was significantly higher in the MlNAC2 overexpression lines than the control.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700