用户名: 密码: 验证码:
The effects of size, shape, and surface composition on the diffusive behaviors of nanoparticles at/across water–oil interfaces via molecular dynamics simulations
详细信息    查看全文
  • 作者:Wei Gao ; Yang Jiao ; Lenore L. Dai
  • 关键词:Molecular dynamics simulations ; Oil/water interfaces ; Buckyball ; Carbon nanotube ; Surface morphology ; Diffusion behaviors
  • 刊名:Journal of Nanoparticle Research
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:18
  • 期:4
  • 全文大小:3,580 KB
  • 参考文献:Andrievsky GV, Klochkov VK, Bordyuh AB, Dovbeshko GI (2002) Comparative analysis of two aqueous-colloidal solutions of C60 fullerene with help of FTIR reflectance and UV–Vis spectroscopy. Chem Phys Lett 364:8–17CrossRef
    Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684CrossRef
    Berendsen HJC, Vanderspoel D, Vandrunen R (1995) GROMACS—a message-passing parallel molecular-dynamics implementation. Comput Phys Commun 91:43–56CrossRef
    Bernard P, Binks TSH (2006) Diffusion: mass transfer in fluid systems. Cambridge University Press, Cambridge
    Binks BP (2002) Particles as surfactants—similarities and differences. Curr Opin Colloid Interface Sci 7:21–41CrossRef
    Binks BP, Lumsdon SO (2000) Influence of particle wettability on the type and stability of surfactant-free emulsions. Langmuir 16:8622–8631CrossRef
    Chandler D (1978) Statistical mechanics of isomerization dynamics in liquids and the transition state approximation. J Chem Phys 68:2959CrossRef
    Chandler D (2005) Interfaces and the driving force of hydrophobic assembly. Nature 437:640–647CrossRef
    Chen S-H (1982) Tracer diffusion in polyatomic liquids. III. J Chem Phys 77:2540CrossRef
    Cupples HL (1947) Interfacial tension by the ring method: the benzene–water interface. J Phys Colloid Chem 51:1341–1345CrossRef
    Cussler EL (2009) Diffusion: mass transfer in fluid systems. Cambridge University Press, CambridgeCrossRef
    de Folter JWJ, Hutter EM, Castillo SIR, Klop KE, Philipse AP, Kegel WK (2014) Particle shape anisotropy in Pickering emulsions: cubes and peanuts. Langmuir 30:955–964CrossRef
    Einstein A (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Phys 322:549–560CrossRef
    Frost DS, Dai LL (2011a) Molecular dynamics simulations of nanoparticle self-assembly at ionic liquid a water and ionic liquid a oil interfaces. Langmuir 27:11339–11346CrossRef
    Frost DS, Dai LL (2012) Molecular dynamics simulations of charged nanoparticle self-assembly at ionic liquid-water and ionic liquid–oil interfaces. J Chem Phys 136:084706CrossRef
    Frost DS, Machas M, Dai LL (2012) Molecular dynamics studies on the adaptability of an ionic liquid in the extraction of solid nanoparticles. Langmuir 28:13924–13932CrossRef
    Fu C-F, Tian SX (2011) A comparative study for molecular dynamics simulations of liquid benzene. J Chem Theory Comput 7:2240–2252CrossRef
    Garate JA, Perez-Acle T, Oostenbrink C (2014) On the thermodynamics of carbon nanotube single-file water loading: free energy, energy and entropy calculations. Phys Chem Chem Phys 16:5119–5128CrossRef
    Goodwin RD (1988) Benzene thermophysical properties from 279 to 900 K at pressures to 1000 bar. J Phys Chem Ref Data 17:1541CrossRef
    Hub JS, de Groot BL, van der Spoel D (2010) g_wham—a free weighted histogram analysis implementation including robust error and autocorrelation estimates. J Chem Theory Comput 6:3713–3720CrossRef
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38CrossRef
    Kirkwood JG (1935) Statistical mechanics of fluid mixtures. J Chem Phys 3:300CrossRef
    Kumar S, Bouzida D, Swendsen R (1992) The weighted histogram analysis method for free-energy calculations on biomolecule. I. The method. J Comput Theory 13:1011–1021
    Lai B, Oostenbrink C (2012) Binding free energy, energy and entropy calculations using simple model systems. Theor Chem Acc 131:1–13CrossRef
    Larin SV, Glova AD, Serebryakov EB, Nazarychev VM, Kenny JM, Lyulin SV (2015) Influence of the carbon nanotube surface modification on the microstructure of thermoplastic binders. RSC Adv 5:51621–51630CrossRef
    Lin Y, Skaff H, Emrick T, Dinsmore AD, Russell TP (2003) Nanoparticle assembly and transport at liquid–liquid interfaces. Science 299:226–229CrossRef
    Luo M, Mazyar OA, Zhu Q, Vaughn MW, Hase WL, Dai LL, March RV, Final I, May F (2006a) Molecular dynamics simulation of nanoparticle self-assembly at a liquid–liquid interface 22:6385–6390
    Luo M, Mazyar OA, Zhu Q (2006b) Molecular dynamics simulation of nanoparticle self-assembly at a liquid–liquid interface. Langmuir 22:6385–6390CrossRef
    Luo M, Song Y, Dai LL (2009) Heterogeneous or competitive self-assembly of surfactants and nanoparticles at liquid–liquid interfaces. Mol Simul 35:773–784CrossRef
    Ma H, Dai LL (2007) Particle-laden emulsions. In: Taylor & Francis Online: particle laden emulsions—encyclopedia of surface and colloid science, Second Edition. Taylor & Francis, pp 1–17
    Malde AK, Zuo L, Breeze M, Stroet M, Poger D, Nair PC, Oostenbrink C, Mark AE (2011) An automated force field topology builder (ATB) and repository: version 1.0. J Chem Theory Comput 7:4026–4037CrossRef
    Mazyar OA, Hase WL (2006) Dynamics and kinetics of heat transfer at the interface of model diamond [111] nanosurfaces. J Phys Chem A 110:526–536CrossRef
    Moreira NH, Skaf MS. (2004) Structural characterization of the H2O/CCl4 liquid interface using molecular dynamics simulations. Progr Colloid Polym Sci
    Oostenbrink C, Villa A, Mark AE, van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25:1656–1676CrossRef
    Roux B (1995) The calculation of the potential of mean force using computer simulations. Comput Phys Commun 91:275–282CrossRef
    Russo D, Hura G, Head-Gordon T (2004) Hydration dynamics near a model protein surface. Biophys J 86:1852–1862CrossRef
    Schmid N, Eichenberger AP, Choutko A, Riniker S, Winger M, Mark AE, van Gunsteren WF (2011) Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur Biophys J 40:843–856CrossRef
    Song Y, Luo M, Dai LL (2010) Understanding nanoparticle diffusion and exploring interfacial nanorheology using molecular dynamics simulations. Langmuir 26:5–9CrossRef
    Storm D, Sheu E (1995) Characterization of colloidal asphaltenic particles in heavy oil. Fuel 74:1140–1145CrossRef
    Tarimala S, Dai LL (2004) Structure of microparticles in solid-stabilized emulsions. Langmuir 20:3492–3494CrossRef
    Tuteja A, Mackay ME, Narayanan S (2007) Breakdown of the continuum Stokes–Einstein relation for nanoparticle diffusion. Nano Lett 7:1276–1281CrossRef
    van der Spoel D, van Maaren PJ, Caleman C (2012) GROMACS molecule & liquid database. Bioinformatics 28:752–753CrossRef
    Wong-Ekkabut J, Karttunen M (2012) Assessment of common simulation protocols for simulations of nanopores, membrane proteins, and channels. J Chem Theory Comput 8:2905–2911CrossRef
    Zhang Y, Feller SE, Brooks BE, Pastor RW (1995) Computer simulation of liquid/liquid interfaces. I. Theory and application to octane/water. J Chem Phys 103:10252–10266CrossRef
    Zhang L, Wang L, Kao Y (2007) Mapping hydration dynamics around a protein surface. Proc Natl Acad Sci USA 104:18461–18466CrossRef
  • 作者单位:Wei Gao (1)
    Yang Jiao (1)
    Lenore L. Dai (1)

    1. School of Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85287, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Nanotechnology
    Inorganic Chemistry
    Characterization and Evaluation Materials
    Physical Chemistry
    Applied Optics, Optoelectronics and Optical Devices
  • 出版者:Springer Netherlands
  • ISSN:1572-896X
文摘
We have employed molecular dynamics simulations to systematically investigate the effects of nanoparticles’ structural and chemical properties on their diffusive behaviors at/across the water–benzene interface. Four different nanoparticles were studied: modified hydrocarbon nanoparticles with a mean diameter of 1.2 nm (1.2HCPs), modified hydrocarbon nanoparticles with a mean diameter of 0.6 nm (0.6HCPs), single-walled carbon nanotubes (SWCNTs), and buckyballs. We found that the diffusion coefficients of 0.6 and 1.2HCP were larger than the corresponding values predicted using the Stokes–Einstein (SE) equation and attributed this deviation to the small particle size and the anisotropy of the interface system. In addition, the observed directional diffusive behaviors for various particles were well-correlated with the derivative of the potential of mean force (PMF), which might indicate an effective driving force for the particles along the direction perpendicular to the interface. We also found that nanoparticles with isotropic shape and uniform surface, e.g., buckyballs, tend to have smaller diffusion coefficients than those of nanoparticles with comparable dimensions but anisotropic shapes and non-uniform surface composition, e.g., SWCNT and 0.6HCP. One possible hypothesis for this behavior is that the “perfect” isotropic shape and uniform surface of buckyballs result in a better-defined “solvation shell” (i.e., a shell of solution molecules), which leads to a larger “effective radius” of the particle, and thus, a reduced diffusion coefficient.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700