用户名: 密码: 验证码:
Design and preparation of quantum dots fluorescent probes for in situ identification of Microthrix parvicella in bulking sludge
详细信息    查看全文
  • 作者:Xuening Fei ; Wenke Sun ; Lingyun Cao ; Xiumei Jiao
  • 关键词:Fluorescent QDs probes ; Hydrophobic ; In situ identification ; Microthrix parvicella
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:100
  • 期:2
  • 页码:961-968
  • 全文大小:1,325 KB
  • 参考文献:Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22(1):47–52PubMed CrossRef
    Araújo DSL, Ferreira V, Neto MM, Pereira MA, Mota M, Nicolau A (2015) Study of 16 Portuguese activated sludge systems based on filamentous bacteria populations and their relationships with environmental parameters. Appl Microbiol Biot 99(12):5307–5316CrossRef
    Bailey RE, Nie S (2003) Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. J Am Chem Soc 125(23):7100–7106PubMed CrossRef
    Blackall LL, Harbers AE, Greenfield PF, Hayward AC (1988) Actinomycete scum problems in Australian activated sludge plants. Water Sci Technol 20(11–12):493–495
    Blackall LL, Seviour EM, Cunningham MA, Seviour RJ, Hugenholtz P (1995) “Microthrix parvicella” is a novel, deep branching member of the actinomycetes subphylum. Syst Appl Microbiol 17(4):513–518CrossRef
    Blackall LL, Stratton H, Bradford D, Dot TD, Sjörup C, Seviour EM, Seviour RJ (1996) “Candidatus Microthrix parvicella”, a filamentous bacterium from activated sludge sewage treatment plants. Int J Syst Bacteriol 46(1):344–346PubMed CrossRef
    Blackman B, Battaglia DM, Mishima TD, Johnson MB, Peng X (2007) Control of the morphology of complex semiconductor nanocrystals with a type II heterojunction, dots vs peanuts, by thermal cycling. Chem Mater 19(15):3815–3821CrossRef
    Blackman B, Battaglia D, Peng X (2008) Bright and water-soluble near IR-Emitting CdSe/CdTe/ZnSe Type-II/Type-I nanocrystals, tuning the efficiency and stability by growth. Chem Mat 20(15):4847–4853CrossRef
    Chattopadhyay PK, Price D, Harper TF, Betts MR, Yu J, Gostick E, Perfetto SP, Goepfert P, Koup RA, De Rosa SC, Bruchez MP (2006) Quantum dot semiconductor nanocrystals for immunophenotyping by polychromatic flow cytometry. Nat Med 12(8):972–977PubMed CrossRef
    Chen Y, Rosenzweig Z, Chem A (2002) Luminescent CdS quantum dots as selective ion probes. Anal Chem 74(19):5132–5138PubMed CrossRef
    de los Reyes FL, Rothauszky D, Raskin L (2002) Microbial community structures in foaming and nonfoaming full-scale wastewater treatment plants. Water Environ Res 74(5):437–449(13)PubMed CrossRef
    Dong W, Guo L, Wang M, Xu S (2009) CdTe QDs-based prostate-specific antigen probe for human prostate cancer cell imaging. J Lumin 129(9):926–930CrossRef
    Eikelboom DH, Van Buijsen HJJ (1983) Microscopic sludge investigation manual. TNO Research Institute of Environmental Hygiene, Delft
    Erhart R, Bradford D, Seviour RJ, Amann R, Blackall LL (1997) Development and use of fluorescent in-situ hybridization probes for the detection and identification of “Microthrix parvicella” in activated sludge. Sys Appl Microbiol 20(2):310–318CrossRef
    Gao X, Cui Y, Levenson RM, Chung LW, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22(8):969–976PubMed CrossRef
    Gaponik N, Talapin DV, Rogach AL, Hoppe K, Shevchenko EV, Kornowski A, Eychmüller A, Weller H (2002) Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes. J Phys Chem B 106(29):7177–7185CrossRef
    Gui R, An X (2013) Layer-by-layer aqueous synthesis, characterization and fluorescence properties of type-II CdTe/CdS core/shell quantum dots with near-infrared emission. RSC Adv 3:20959–20969CrossRef
    Hamit-Eminovski J, Eskilsson K, Arnebrant T (2010) Change in surface properties of Microthrix parvicella upon addition of polyaluminium chloride as characterized by atomic force microscopy. Bioremediat J 26(3):323–331
    Haobo Bao YG, Zhen L, Gao M (2004) Enhancement effect of illumination on the photoluminescence of water-soluble CdTe nanocrystals: toward highly fluorescent CdTe/CdS core-shell structure. Chem Mater 16(50):3853–3859
    Harrison MT, Kershaw SV, Burt MG, Eychmuller A, Weller H, Rogach AL (2000) Wet chemical synthesis and spectroscopic study of CdHgTe nanocrystals with strong near-infrared luminescence. Mater Sci Eng B 69(70):355–360CrossRef
    He Y, Lu HT, Sai LM, Lai WY, Fan QL, Wang LH, Huang W (2006) Microwave-assisted growth and characterization of water-dispersed CdTe/CdS core-shell nanocrystals with high photoluminescence. J Phys Chem B 110(27):13370–13374PubMed CrossRef
    Idowu M, Chen JY, Nyokong T (2008) Photoinduced energy transfer between water-soluble CdTe quantum dots and aluminium tetrasulfonated phthalocyanine. New J Chem 32(2):290–296CrossRef
    Jenkins D, Richard MG, Daigger GT (1993) Manual on the causes and control of activated sludge bulking and foaming, 2 edn. Lewis
    Kim S, Lim YT, Soltesz EG, Grand AMD, Lee J, Nakayama A, Parker JA, Mihaljevic T, Laurence RG, Dor DM, Cohn LH, Bawendi MG (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22(1):93–97PubMed PubMedCentral CrossRef
    Kumari SKS, Marrengane Z, Bux F (2009) Application of quantitative RT-PCR to determine the distribution of Microthrix parvicella in full-scale activated sludge treatment systems. Appl Microbiol Biot 83(6):1135–1141CrossRef
    Lienen T, Kleyböcker A, Verstraete W, Würdemann H (2014) Foam formation in a downstream digester of a cascade running full-scale biogas plant: influence of fat, oil and grease addition and abundance of the filamentous bacterium Microthrix parvicella. Bioresource Technol 153(2):1–7CrossRef
    Limpiyakorn T, Kurisu F, Yagi O (2006) Development and application of real-time PCR for quantification of specific ammonia-oxidizing bacteria in activated sludge of sewage treatment systems. Appl Microbiol Biot 72(5):1004–1013CrossRef
    Martins AMP, Pagilla K, Heijnen JJ, Loosdrecht MCMV (2004) Filamentous bulking sludge—a critical review. Water Res 38(4):793–817PubMed CrossRef
    Mcilroy SJ, Kristiansen R, Albertsen M, Karst SM, Rossetti S, Nielsen JL, Tandoi V, Seviour RJ, Nielsen PH (2013) Metabolic model for the filamentous ‘Candidatus Microthrix parvicella’ based on genomic and metagenomic analyses. ISME J 7(6):1161–1172PubMed CrossRef
    Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4(6):435–446PubMed CrossRef
    Mekis I, Talapin DV, Kornowski A, Haase M, Weller H (2003) One-pot synthesis of highly luminescent CdSe/CdS core-shell nanocrystals via organometallic and “Greener” chemical approaches. J Physl Chem B 107(30):7454–7462CrossRef
    Nielsen PHRP, Dueholm TE, Nielsen JL (2002) Microthrix parvicella, a specialized lipid consumer in anaerobic-aerobic activated sludge plants. Water Sci Technol 46(1–2):73–80PubMed
    Pan D, Wang Q, Jiang S, Ji X, An L (2005) Synthesis of extremely small CdSe and highly luminescent CdSe/CdS core–shell nanocrystals via a novel two-phase thermal approach. Adv Mater 17(2):176–179CrossRef
    Roels T, Dauwe F, Van DS, De WK, Roelandt F (2002) The influence of PAX-14 on activated sludge systems and in particular on Microthrix parvicella. Water Sci Technol 46(1–2):487–490PubMed
    Rogach AL (2000) Nanocrystalline CdTe and CdTe(S) particles: wet chemical preparation, size-dependent optical properties and perspectives of optoelectronic applications. Mat Sci Eng B 69(70):435–440CrossRef
    Rogach AL, Katsikas L, Kornowski A, Su DS, Eychmüller A, Weller H (1996) Synthesis and characterization of thiol-stabilized CdTe nanocrystals. Ber Bunsenges Phys Chem 100(11):1772–1778CrossRef
    Rossetti S, Christensson C, Blackall LL, Tandoi V (1997) Phenotypic and phylogenetic description of an Italian isolate of “Microthrix parvicella”. J Appl Microbiol 82(4):405–410PubMed CrossRef
    Rossetti S, Tomei MC, Nielsen PH, Tandoi V (2005) “Microthrix parvicella”, a filamentous bacterium causing bulking and foaming in activated sludge systems: a review of current knowledge. Fems Microbiol Rev 29(1):49–64PubMed CrossRef
    Skourides P, Libchaber A, Norris DJ, Brivanlou AH, Noireaux V, Dubertret B (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298(5599):1759–1762PubMed CrossRef
    Slijkhuis H (1983) Microthrix parvicella, a filamentous bacterium isolated from activated sludge: cultivation in a chemically defined medium. Appl Environ Microbiol 46(4):832–839PubMed PubMedCentral
    Smith AMGX, Nie S (2009) Quantum-dot nanocrystals for in vivo molecular and cellular imaging. Photochem Photobiol 80(3):377–385CrossRef
    Vanysacker L (2014) Development and evaluation of a TaqMan duplex real-time PCR quantification method for reliable enumeration of Candidatus Microthrix. J Microbiol Met 97(2):6–14CrossRef
    Wanner JKC, Nielsen PH (2010) Microbiology of bulking. IWA Pubishing, London
    Westlund AD, Hagland E, Rothman M (1998) Operational aspects on foaming in digesters caused by Microthrix parvicella. Water Sci Technol 38(8):29–34(6)CrossRef
    Wu X (2002) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21(1):41–46PubMed CrossRef
    Xu XH, Phongphonkit P, Ji HF (2011) A fluorescent sensor with a large stokes shift. Imag Sci Photochemi 29(5):364–371
    Zhang H, Zhou Z, Yang B (2002) The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles. J Phys Chem B 107(1):8–13CrossRef
    Zhang H, Wang L, Xiong H, Hu L, Yang B, Li W (2003) Hydrothermal synthesis for high-quality CdTe nanocrystals. Adv Mater 15(20):1712–1715CrossRef
    Zhang H, Sun P, Liu C, Gao H, Xu L, Fang J, Wang M, Liu J, Xu S (2011) L-Cysteine capped CdTe-CdS core-shell quantum dots: preparation, characterization and immuno-labeling of HeLa cells. Luminescence 26(2):86–92PubMed CrossRef
    Zhong X, Han M, Dong Z, White TJ, Knoll W (2003) Composition-tunable Zn(x)Cd(1-x)Se nanocrystals with high luminescence and stability. J Am Chem Soc 125(28):8589–8594PubMed CrossRef
  • 作者单位:Xuening Fei (1) (2) (3)
    Wenke Sun (1)
    Lingyun Cao (2)
    Xiumei Jiao (3)
    Dayong Lin (3)
    Guozhi Jia (2)

    1. School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
    2. School of Science, Tianjin Chengjian University, No. 26 Jinjing Road, Xiqing District, Tianjin, 300384, China
    3. School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0614
文摘
A series of quantum dots (QDs) fluorescent probes for the in situ identification of Microthrix parvicella (M. parvicella) in bulking sludge were designed and prepared. In the preparation of CdTe/CdS QDs, the 11-mercaptoundecanoic acid (11-acid) and 16-mercaptohexadecanoic acid (16-acid) were used as the stabilizer. The prepared QDs probes were characterized by Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and transmission electron microscopy (TEM), and the results showed that the CdTe/CdS QDs formed a core-shell structure and the long carbon chain was successfully grafted onto its surface. And the three QDs probes had different crystallinity and particle size, which was due to the inhibition effect of long carbon chain. The optical properties test results showed that although the formed core-shell structure and long carbon chain affected the fluorescent intensity, adsorption, and emission spectra of the QDs probes, the probes B and C had a large stokes-shift of 82 and 101 nm, which was a benefit for their fluorescent labeling property. In the fluorescent identification of M. parvicella, the probes B and C effectively adsorbed onto the surface of M. parvicella through a hydrophobic bond, and then identified M. parvicella by their unique fluorescence. In addition, it was found that a better hydrophobic property resulted in better identification efficiency. Keywords Fluorescent QDs probes Hydrophobic In situ identification Microthrix parvicella

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700