用户名: 密码: 验证码:
A spectrometer for measuring particle size distributions in the range of 3 nm to 10 渭m
详细信息    查看全文
  • 作者:Jieqiong Liu ; Jingkun Jiang ; Qiang Zhang…
  • 关键词:spectrometer ; particle size distribution ; electrical mobility ; aerodynamic diameter ; linear inversion
  • 刊名:Frontiers of Environmental Science & Engineering
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:10
  • 期:1
  • 页码:63-72
  • 全文大小:683 KB
  • 参考文献:1.Brook R D, Franklin B, Cascio W, Hong Y, Howard G, Lipsett M, Luepker R, Mittleman M, Samet J, Smith S C Jr, Tager I. Air pollution and cardiovascular disease: a statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation, 2004, 109(21): 2655鈥?671CrossRef
    2.Nel A. Atmosphere. Air pollution-related illness: effects of particles. Science, 2005, 308(5723): 804鈥?06
    3.Pope C A 3rd, Dockery D W. Health effects of fine particulate air pollution: lines that connect. Journal of the Air & Waste Management Association (1995), 2006, 56(6): 709鈥?42CrossRef
    4.Oberd枚rster G, Stone V, Donaldson K. Toxicology of nanoparticles: a historical perspective. Nanotoxicology, 2007, 1(1): 2鈥?5CrossRef
    5.Shah J J, Watson J G, Cooper J A, Huntzicker J J. Aerosol chemical composition and light scattering in Portland, Oregon: the role of carbon. Atmospheric Environment (1967), 1984, 18(1): 235鈥?40CrossRef
    6.Sloane C S, Watson J, Chow J, Pritchett L, Willard Richards L. Sizesegregated fine particle measurements by chemical species and their impact on visibility impairment in Denver. Atmospheric Environment. Part A, General Topics, 1991, 25(5鈥?): 1013鈥?024CrossRef
    7.Patterson E, Gillette D, Grams G. The relation between visibility and the size-number distribution of airborne soil particles. Journal of Applied Meteorology, 1976, 15(5): 470鈥?78CrossRef
    8.McMurry P H, Shepherd M F, Vickery J S. Particulate Matter Science for Policy Makers: A NARSTO Assessment. Cambridge: Cambridge University Press, 2004
    9.Hao J, He K, Duan L, Li J, Wang L. Air pollution and its control in China. Frontiers of Environmental Science & Engineering in China, 2007, 1(2): 129鈥?42CrossRef
    10.IPCC. Climate Change 2007: IPCC Fourth Assessment Report (AR4). Cambridge: Cambridge University Press, 2007
    11.Shi X, He K, Zhang J, Ma Y, Ge Y, Tan J. A comparative study of particle size distribution from two oxygenated fuels and diesel fuel. Frontiers of Environmental Science & Engineering in China, 2010, 4(1): 30鈥?4CrossRef
    12.Wang S C, Flagan R C. Scanning electrical mobility spectrometer. Aerosol Science and Technology, 1990, 13(2): 230鈥?40CrossRef
    13.Knutson E O, Whitby K T. Aerosol classification by electric mobility: apparatus, theory, and applications. Journal of Aerosol Science, 1975, 6(6): 443鈥?51CrossRef
    14.Baron P A, Mazumder M K, Cheng Y S, Peters T M. Real-time Techniques for Aerodynamic Size Measurement, in Aerosol Measurement, 3rd ed. New York: John Wiley & Sons, 2011, 313鈥?38
    15.Sorensen C M, Gebhart J, O鈥橦ern T, Rader D J. Optical Measurement Techniques: Fundamentals and Applications, in Aerosol Measurement, 3rd ed. New York: John Wiley & Sons, 2011, 269鈥?12
    16.Khlystov A, Stanier C, Pandis S N. An algorithm for combining electrical mobility and aerodynamic size distributions data when measuring ambient aerosol special issue of aerosol science and technology on findings from the fine particulate matter supersites program. Aerosol Science and Technology, 2004, 38(S1): 229鈥?38CrossRef
    17.Shen S, Jaques P A, Zhu Y, Geller MD, Sioutas C. Evaluation of the SMPS-APS system as a continuous monitor for measuring PM2.5, PM10 and coarse (PM2.5鈥?0) concentrations. Atmospheric Environment, 2002, 36(24): 3939鈥?950CrossRef
    18.Shi J P, Harrison R M, Evans D. Comparison of ambient particle surface area measurement by epiphaniometer and SMPS/APS. Atmospheric Environment, 2001, 35(35): 6193鈥?200CrossRef
    19.Hand J L, Kreidenweis S M. A new method for retrieving particle refractive index and effective density from aerosol size distribution data. Aerosol Science and Technology, 2002, 36(10): 1012鈥?026CrossRef
    20.Birmili W, Stratmann F, Wiedensohler A. Design of a DMA-based size spectrometer for a large particle size range and stable operation. Journal of Aerosol Science, 1999, 30(4): 549鈥?53CrossRef
    21.Karlsson M N A, Martinsson B G. Methods to measure and predict the transfer function size dependence of individual DMAs. Journal of Aerosol Science, 2003, 34(5): 603鈥?25CrossRef
    22.Woo K S, Chen D R, Pui D Y H, McMurry P H. Measurement of Atlanta aerosol size distributions: observations of ultrafine particle events. Aerosol Science and Technology, 2001, 34(1): 75鈥?7CrossRef
    23.Shi Q. Aerosol size distribution (3nm to 2 渭m) measured at the St. Louis Supersite (4/1/01-4/30/02). Dissertation for the Master Degree. Twin Cities: University of Minnesota, 2003
    24.Wiedensohler A, Birmili W, Nowak A, Sonntag A, Weinhold K, Merkel M, Wehner B, Tuch T, Pfeifer S, Fiebig M, Fj盲raa A M, Asmi E, Sellegri K, Depuy R, Venzac H, Villani P, Laj P, Aalto P, Ogren J A, Swietlicki E, Williams P, Roldin P, Quincey P, H眉glin C, Fierz-Schmidhauser R, Gysel M, Weingartner E, Riccobono F, Santos S, Gr眉ning C, Faloon K, Beddows D, Harrison R, Monahan C, Jennings S G, O鈥橠owd C D, Marinoni A, Horn H G, Keck L, Jiang J, Scheckman J, McMurry P H, Deng Z, Zhao C S, Moerman M, Henzing B, de Leeuw G, L枚schau G, Bastian S. Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions. Atmospheric Measurement Techniques, 2012, 5: 657鈥?85CrossRef
    25.Stolzenburg M R, McMurry P H. Equations governing single and tandem dma configurations and a new lognormal approximation to the transfer function. Aerosol Science and Technology, 2008, 42(6): 421鈥?32CrossRef
    26.Jiang J, Chen M, Kuang C, Attoui M, McMurry P H. Electrical mobility spectrometer using a diethylene glycol condensation particle counter for measurement of aerosol size distributions down to 1 nm. Aerosol Science and Technology, 2011, 45(4): 510鈥?21CrossRef
    27.TSI. Model 3772 Condensation Particle Counter Manual. TSI Incorporated, St. Paul, MN, 2007
    28.TSI. Model 3776 Ultrafine Condensation Particle Counter Manual. TSI Incorporated, St. Paul, MN, 2007
    29.Jiang J, Attoui M, Heim M, Brunelli N A, McMurry P H, Kasper G, Flagan R C, Giapis K, Mouret G. Transfer functions and penetrations of five differential mobility analyzers for sub-2 nm particle classification. Aerosol Science and Technology, 2011, 45(4): 480鈥?92CrossRef
    30.Kulkarni P, Baron P A, Willeke K. Aerosol Measurement: Principles, Techniques, and Applications. New York: John Wiley & Sons, 2011CrossRef
    31.Reineking A, Porstend枚rfer J. Measurements of particle loss functions in a differential mobility analyzer (TSI, model 3071) for different flow rates. Aerosol Science and Technology, 1986, 5(4): 483鈥?86
    32.Brockmann J E. Aerosol Transport in Sampling Lines and Inlets, in Aerosol Measurement. New York: John Wiley & Sons, 2011, 68鈥?05
    33.Fuchs N. On the stationary charge distribution on aerosol particles in a bipolar ionic atmosphere. Pure Applied Geophsics, 1963, 56(1): 185鈥?93CrossRef
    34.Hoppel W A, Frick G M. Ion鈥攁erosol attachment coefficients and the steady-state charge distribution on aerosols in a bipolar ion environment. Aerosol Science and Technology, 1986, 5(1): 1鈥?1CrossRef
    35.Wiedensohler A. An approximation of the bipolar charge distribution for particles in the submicron size range. Journal of Aerosol Science, 1988, 19(3): 387鈥?89CrossRef
    36.Hagen D E, Alofs D J. Linear inversion method to obtain aerosol size distributions from measurements with a differential mobility analyzer. Aerosol Science and Technology, 1983, 2(4): 465鈥?75CrossRef
    37.Mai H J, Jiang J K, He Z X, Hao J M. Design and evaluation of an aerosol nanoparticle generation system. Environmental Science, 2013, 34(8): 2950鈥?954 (in Chinese)
    38.Liu B Y H, Pui D Y H. A submicron aerosol standard and the primary, absolute calibration of the condensation nuclei counter. Journal of Colloid and Interface Science, 1974, 47(1): 155鈥?71CrossRef
    39.Hudson P K, Gibson E R, Young MA, Kleiber P D, Grassian V H. A newly designed and constructed instrument for coupled infrared extinction and size distribution measurements of aerosols. Aerosol Science and Technology, 2007, 41(7): 701鈥?10CrossRef
    40.TSI. Model 3068B Aerosol Electrometer Manual. TSI Incorporated, St. Paul, MN, 2006
    41.Park J Y, McMurry P H, Park K. Production of residue-free nanoparticles by atomization of aqueous solutions. Aerosol Science and Technology, 2012, 46(3): 354鈥?60CrossRef
    42.Armendariz A J, Leith D. Concentration measurement and counting efficiency for the aerodynamic particle sizer 3320. Journal of Aerosol Science, 2002, 33(1): 133鈥?48CrossRef
    43.Peters T M, Leith D. Concentration measurement and counting efficiency of the aerodynamic particle sizer 3321. Journal of Aerosol Science, 2003, 34(5): 627鈥?34CrossRef
    44.Hinds W C, Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 1999
    45.DeCarlo P F, Slowik J G, Worsnop D R, Davidovits P, Jimenez J L. Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: Theory. Aerosol Science and Technology, 2004, 38(12): 1185鈥?205
    46.Zelenyuk A, Cai Y, Imre D. From agglomerates of spheres to irregularly shaped particles: determination of dynamic shape factors from measurements of mobility and vacuum aerodynamic diameters. Aerosol Science and Technology, 2006, 40(3): 197鈥?17CrossRef
    47.Weis D D, Ewing G E. Water content and morphology of sodium chloride aerosol particles. Journal of Geophysical Research, 1999, 104(D17): 21275鈥?1285CrossRef
    48.Rose D, Gunthe S S, Mikhailov E, Frank G P, Dusek U, Andreae M O, P枚schl U. Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment. Atmospheric Chemistry and Physics, 2008, 8: 1153鈥?179CrossRef
    49.Weast R C, Astle M J. CRC Handbook of Chemistry and Physics, 63rd ed. Florida: CRC Press, 1982
  • 作者单位:Jieqiong Liu (1)
    Jingkun Jiang (1) (2)
    Qiang Zhang (1)
    Jianguo Deng (1)
    Jiming Hao (1) (2)

    1. State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
    2. State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing, 100084, China
  • 刊物主题:Environment, general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2095-221X
文摘
A spectrometer combining electrical mobility sizing and aerodynamic sizing was developed to measure aerosol size distributions in the range of 3 nm to 10 渭m. It includes three instruments which cover different size ranges (a nano scanning mobility particle sizer (NSMPS, 3鈥?0 nm), a regular scanning mobility particle sizer (RSMPS, 40鈥?00 nm), and an aerodynamic particle sizer (APS, 550 nm鈥?0 渭m)). High voltage and sheath flow of the NSMPS and RSMPS were supplied using two home-built control boxes. A LabVIEW program was developed for spectrometer automatic operation. A linear inversion method was applied to correct particle multiple charging effects and to integrate data from the three instruments into a wide-range size distribution. Experiments were conducted to compare distributions in the overlap size ranges measured by three instruments. Good agreement between the NSMPS and RSMPS was achieved after correcting for the difference in counting efficiencies of the two particle counters. Aerodynamic size distributions reported by the APS were converted to mobility size distributions by applying an effective density method. Distributions measured by the RSMPS and APS were consistent in the overlap size range of 550鈥?00 nm. A full spectrum in the size range of 3 nm to 10 渭m was demonstrated by measuring aerosol generated using a mixture of different sized polystyrene latex spheres. Keywords spectrometer particle size distribution electrical mobility aerodynamic diameter linear inversion

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700