用户名: 密码: 验证码:
Bi2MoO6/RGO composite nanofibers: facile electrospinning fabrication, structure, and significantly improved photocatalytic water splitting activity
详细信息    查看全文
  • 作者:Jing Zhao ; Ying Yang ; Wensheng Yu ; Qianli Ma…
  • 刊名:Journal of Materials Science: Materials in Electronics
  • 出版年:2017
  • 出版时间:January 2017
  • 年:2017
  • 卷:28
  • 期:1
  • 页码:543-552
  • 全文大小:
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Optical and Electronic Materials; Characterization and Evaluation of Materials;
  • 出版者:Springer US
  • ISSN:1573-482X
  • 卷排序:28
文摘
Bi2MoO6/reduced graphene oxide (RGO) composite nanofibers were successfully fabricated by calcining the electrospun polyvinyl pyrrolidone (PVP)/RGO/[(NH4)6Mo7O24 + Bi(NO3)3] composite nanofibers. The products were investigated in detail by X-ray diffractometer, scanning electron microscope, transmission electron microscope, UV–Vis diffuse reflectance spectroscope and X-ray photoelectron spectroscope. The as-prepared Bi2MoO6/RGO composite nanofibers are pure orthorhombic phase with space group of Pbca, and the diameter is 132 ± 18 nm. These nanocomposite samples display high photocatalytic hydrogen production activity in aqueous solutions containing methanol as sacrificial reagent under visible light irradiation. Bi2MoO6/5 % RGO composite nanofibers used as photocatalyst for water splitting exhibit the highest H2 evolution rate of 794.72 μmol h−1, which is improved by 2.86 times compared to Bi2MoO6 nanofibers. The enhancement of photocatalytic hydrogen production performance is due to addition of RGO, the intimate interfacial contact and large contact area between Bi2MoO6 nanoparticles and RGO sheets, which help to make full use of the electron conductivity of RGO for transferring the photogenerated electrons and separating the photoproduced carriers. Therefore the electrospinning is a facile and effective technique to fabricate Bi2MoO6/RGO composite nanofibers which could take advantage of solar energy to achieve efficient H2-evolution from water splitting.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700