用户名: 密码: 验证码:
Responds of Bone Cells to Microgravity: Ground-Based Research
详细信息    查看全文
  • 作者:Jian Zhang ; Jingbao Li ; Huiyun Xu ; Pengfei Yang&#8230
  • 关键词:Simulated microgravity ; Clinostat ; Diamagnetic levitation ; Spaceflight osteopenia ; Bone cells ; Bone remodeling
  • 刊名:Microgravity Science and Technology
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:27
  • 期:6
  • 页码:455-464
  • 全文大小:488 KB
  • 参考文献:Aguirre, J., Buttery, L., O鈥橲haughnessy, M., Afzal, F., Fernandez de Marticorena, I., Hukkanen, M., Huang, P., MacIntyre, I., Polak, J.: Endothelial nitric oxide synthase gene-deficient mice demonstrate marked retardation in postnatal bone formation, reduced bone volume, and defects in osteoblast maturation and activity. Am. J. Pathol. 158(1), 247鈥?57 (2001)CrossRef
    Alenghat, F.J., Ingber, D.E.: Mechanotransduction: all signals point to cytoskeleton, matrix, and integrins. Sci. STKE. 2002(119), pe6 (2002)
    Arasapam, G., Scherer, M., Cool, J.C., Foster, B.K., Xian, C.J.: Roles of COX-2 and iNOS in the bony repair of the injured growth plate cartilage. J. Cell Biochem. 99(2), 450鈥?61 (2006)CrossRef
    Arfat, Y., Xiao, W., Iftikhar, S., Zhao, F., Li, D., Sun, Y., Zhang, G., Shang, P., Qian, A.: Physiological effects of microgravity on bone cells. Calcif. Tissue Int. 94(6), 569鈥?79 (2014)CrossRef
    Baek, K., Bloomfield, S.A.: Beta-adrenergic blockade and leptin replacement effectively mitigate disuse bone loss. J. Bone Miner. Res. 24(5), 792鈥?99 (2009)CrossRef
    Baldik, Y., Diwan, A.D., Appleyard, R.C., Fang, Z.M., Wang, Y., Murrell, G.A.: Deletion of iNOS gene impairs mouse fracture healing. Bone 37(1), 32鈥?6 (2005)CrossRef
    Baneyx, G., Baugh, L., Vogel, V.: Fibronectin extension and unfolding within cell matrix fibrils controlled by cytoskeletal tension. Proc. Natl. Acad. Sci. U. S. A. 99(8), 5139鈥?143 (2002)CrossRef
    Batra, N., Kar, R., Jiang, J.X.: Gap junctions and hemichannels in signal transmission, function and development of bone. Biochim. Biophys. Acta. 1818(8), 1909鈥?918 (2012)CrossRef
    Bernier, G., Mathieu, M., De Repentigny, Y., Vidal, S.M., Kothary, R.: Cloning and characterization of mouse ACF7, a novel member of the dystonin subfamily of actin binding proteins. Genomics 38(1), 19鈥?9 (1996)CrossRef
    Blaber, E.A., Dvorochkin, N., Torres, M.L., Yousuf, R., Burns, B.P., Globus, R.K., Almeida, E.A.: Mechanical unloading of bone in microgravity reduces mesenchymal and hematopoietic stem cell-mediated tissue regeneration. Stem Cell Res. 13(2), 181鈥?01 (2014)CrossRef
    Bonewald, L.F.: The amazing osteocyte. J. Bone Miner. Res. 26(2), 229鈥?38 (2011)CrossRef
    Borst, A.G., van Loon, J.W.A.: Technology and developments for the random positioning machine, RPM. Microgravity Sci. Technol. 21(4), 287鈥?92 (2009)CrossRef
    Carmeliet, G., Nys, G., Bouillon, R.: Microgravity reduces the differentiation of human osteoblastic MG-63 cells. J. Bone Miner. Res. 12(5), 786鈥?94 (1997)CrossRef
    Carmeliet, G., Nys, G., Stockmans, I., Bouillon, R.: Gene expression related to the differentiation of osteoblastic cells is altered by microgravity. Bone 22(5, Suppl), 139S鈥?43S (1998)CrossRef
    Cavanagh, P.R., Licata, A.A., Rice, A.J.: Exercise and pharmacological countermeasures for bone loss during long-duration space flight. Gravit. Space Biol. Bull. 18(2), 39鈥?8 (2005)
    Dallas, S.L., Prideaux, M., Bonewald, L.F.: The osteocyte: an endocrine cell 鈥nd more. Endocr. Rev. 34(5), 658鈥?90 (2013)CrossRef
    Di, S., Meng, R., Qian, A., Tian, Z., Li, J., Zhang, R., Shang, P.: Impact of osteoclast precursors subjected to random positioning machine on osteoblasts. J. Mech. Med. Biol. 12(04), 1250074 (2012a)CrossRef
    Di, S., Qian, A., Qu, L., Zhang, W., Wang, Z., Ding, C., Li, Y., Ren, H., Shang, P.: Graviresponses of osteocytes under altered gravity. Adv. Space Res. 48(6), 1161鈥?166 (2011)CrossRef
    Di, S., Tian, Z., Gao, X., Qian, A., Brandi, M.L., Shang, P.: Promotion of simulated microgravity by random positioning machine on proliferation and differentiation of human preosteoclastic cells. Space Med. Med. Eng. 25(1), 13鈥?7 (2012b)
    Di, S., Tian, Z., Qian, A., Li, J., Wu, J., Wang, Z., Zhang, D., Yin, D., Brandi, M.L., Shang, P.: Large gradient high magnetic field affects FLG29.1 cells differentiation to form osteoclast-like cells. Int. J. Radiat. Biol. 88(11), 806鈥?13 (2012c)CrossRef
    Dierkes, C., Kreisel, M., Schulz, A., Steinmeyer, J., Wolff, J.-C., Fink, L.: Catabolic properties of microdissected human endosteal bone lining cells. Calcif. Tissue Int. 84(2), 146鈥?55 (2009)CrossRef
    Everts, V., Delaiss茅, J.M., Korper, W., Jansen, D.C., Tigchelaar-Gutter, W., Saftig, P., Beertsen, W.: The bone lining cell: its role in cleaning Howship鈥檚 lacunae and initiating bone formation. J. Bone Miner. Res. 17(1), 77鈥?0 (2002)CrossRef
    Feng, X., McDonald, J.M.: Disorders of bone remodeling. Annu. Rev. Pathol. 6, 121鈥?45 (2011)CrossRef
    Guignandon, A., Lafage-Proust, M.-H., Usson, Y., Laroche, N., Caillot-Augusseau, A., Alexandre, C., Vico, L.: Cell cycling determines integrin-mediated adhesion in osteoblastic ROS 17/2.8 cells exposed to space-related conditions. FASEB J. 15(11), 2036鈥?038 (2001)
    Holick, H.K.: Microgravity-induced bone loss鈥搘ill it limit human space exploration? Lancet 355(9215), 1569鈥?570 (2000)CrossRef
    Hu, L., Li, R., Su, P., Arfat, Y., Zhang, G., Shang, P., Qian, A.: Response and adaptation of bone cells to simulated microgravity. Acta Astronaut. 104(1), 396鈥?08 (2014a)CrossRef
    Hu, L., Li, J., Qian, A., Wang, F., Shang, P.: Mineralization initiation of MC3T3-E1 preosteoblast is suppressed under simulated microgravity condition. Cell Biol. Int. (2014b). doi:10.鈥?002/鈥媍bin.鈥?0391
    Hu, L., Qian, A., Li, D., Li, J., Shang, P.: The response to high magneto-gravitational environment of different differentiating-stage osteoblasts. Chin. J. Cell Biol. 35(7), 950鈥?57 (2013a)
    Hu, L., Qian, A., Wang, Y., Di, S., Shang, P.: Inhibitory effect of simulated microgravity on differentiating preosteoblasts. Adv. Space Res. 51(1), 107鈥?14 (2013b)CrossRef
    Hughes-Fulford, M.: Changes in gene expression and signal transduction in microgravity. J. Gravit. Physiol. 8(1), 1鈥? (2001)
    Hughes-Fulford, M., Lewis, M.: Effects of microgravity on osteoblast growth activation. Exp. Cell Res. 224 (1), 103鈥?09 (1996)CrossRef
    Hughes-Fulford, M., Rodenacker, K., Jvtting, U.: Reduction of anabolic signals and alteration of osteoblast nuclear morphology in microgravity. J. Cell Biochem. 99(2), 435鈥?49 (2006)CrossRef
    Ingber, D.E.: How cells (might) sense microgravity. FASEB J. 13(9001), 3鈥?5 (1999)
    Jessop, H.L., Rawlinson, S.C., Pitsillides, A.A., Lanyon, L.E.: Mechanical strain and fluid movement both activate extracellular regulated kinase (ERK) in osteoblast-like cells but via different signaling pathways. Bone 31(1), 186鈥?94 (2002)CrossRef
    Kacena, M., Todd, P., Landis, W.: Osteoblasts subjected to spaceflight and simulated space shuttle launch conditions. In Vitro Cell Dev. Biol. Anim. 39(10), 454鈥?59 (2003)CrossRef
    Katz, S., Boland, R., Santill谩n, G.: Modulation of ERK 1/2 and p38 MAPK signaling pathways by ATP in osteoblasts: Involvement of mechanical stress-activated calcium influx, PKC and Src activation. Int. J. Biochem. Cell Biol. 38(12), 2082鈥?091 (2006)CrossRef
    Kim, S.W., Pajevic, P.D., Selig, M., Barry, K.J., Yang, J.Y., Shin, C.S., Baek, W.Y., Kim, J.E., Kronenberg, H.M.: Intermittent parathyroid hormone administration converts quiescent lining cells to active osteoblasts. J. Bone Miner. Res. 27(10), 2075鈥?084 (2012)CrossRef
    Kodama, A., Karakesisoglou, I., Wong, E., Vaezi, A., Fuchs, E.: ACF7: an essential integrator of microtubule dynamics. Cell 115(3), 343鈥?54 (2003)CrossRef
    Kondo, H., Nifuji, A., Takeda, S., Ezura, Y., Rittling, S.R., Denhardt, D.T., Nakashima, K., Karsenty, G., Noda, M.: Unloading induces osteoblastic cell suppression and osteoclastic cell activation to lead to bone loss via sympathetic nervous system. J. Biol. Chem. 280(34), 30192鈥?0200 (2005)CrossRef
    Landis, W.J., Hodgens, K.J., Block, D., Toma, C.D., Gerstenfeld, L.C.: Spaceflight effects on cultured embryonic chick bone cells. J. Bone Miner. Res. 15(6), 1099鈥?112 (2000)CrossRef
    LeBlanc, A., Schneider, V., Shackelford, L., West, S., Oganov, V., Bakulin, A., Voronin, L.: Bone mineral and lean tissue loss after long duration space flight. J. Musculoskelet Neuronal. Interact. 1(2), 157鈥?60 (2000)
    Li, J., Wang, L., He, G., Luo, M., Qian, A., Shang, P.: Fibronectin is involved in gravity-sensing of osteoblast like cell. J. Jpn. Soc. Microgravity Appl. 28(2), S36鈥揝40 (2011)
    Lloyd, S.A., Lewis, G.S., Zhang, Y., Paul, E.M., Donahue, H.J.: Connexin 43 deficiency attenuates loss of trabecular bone and prevents suppression of cortical bone formation during unloading. J. Bone Miner. Res. 27(11), 2359鈥?372 (2012)CrossRef
    Loiselle, A.E., Jiang, J.X., Donahue, H.J.: Gap junction and hemichannel functions in osteocytes. Bone 54(2), 205鈥?12 (2013)CrossRef
    Luo, M., Yang, Z., Li, J., Xu, H., Li, S., Zhang, W., Qian, A., Shang, P.: Calcium influx through stretch-activated channels mediates microfilament reorganization in osteoblasts under simulated weightlessness. Adv. Space Res. 51(11), 2058鈥?068 (2013)CrossRef
    Macho, L., Kvetnansky, R., Fickova, M., Popova, I.A., Grigoriev, A.: Effects of exposure to space flight on endocrine regulations in experimental animals. Endocr. Regul. 5(2), 101鈥?14 (2001)
    Maniotis, A.J., Chen, C.S., Ingber, D.E.: Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl. Acad. Sci. U. S. A. 94(3), 849鈥?54 (1997)CrossRef
    Mano, T., Nishimura, N., Iwase, S.: Sympathetic neural influence on bone metabolism in microgravity (Review). Acta Physiol. Hung. 97(4), 354鈥?1 (2010)CrossRef
    Matsushita, T., Chan, Y.Y., Kawanami, A., Balmes, G., Landreth, G.E., Murakami, S.: Extracellular signal-regulated kinase 1 (ERK1) and ERK2 play essential roles in osteoblast differentiation and in supporting osteoclastogenesis. Mol. Cell Biol. 29(21), 5843鈥?857 (2009)CrossRef
    Meng, R., Xu, H., Di, S., Shi, D., Qian, A., Wang, J., Shang, P.: Human mesenchymal stem cells are sensitive to abnormal gravity and exhibit classic apoptotic features. Acta Biochim. Biophys. Sin. (Shanghai) 43 (2), 133鈥?42 (2011)CrossRef
    Nabavi, N., Khandani, A., Camirand, A., Harrison, R.E.: Effects of microgravity on osteoclast bone resorption and osteoblast cytoskeletal organization and adhesion. Bone 49(5), 965鈥?74 (2011)CrossRef
    Nilforoushan, D., Gramoun, A., Glogauer, M., Manolson, M.F.: Nitric oxide enhances osteoclastogenesis possibly by mediating cell fusion. Nitric Oxide 21(1), 27鈥?6 (2009)CrossRef
    Plotkin, L.I., Bellido, T.: Beyond gap junctions: Connexin43 and bone cell signaling. Bone 52(1), 157鈥?66 (2013)CrossRef
    Qian, A., Di, S., Gao, X., Zhang, W., Tian, Z., Li, J., Hu, L., Yang, P., Yin, D., Shang, P.: cDNA microarray reveals the alterations of cytoskeleton-related genes in osteoblast under high magneto-gravitational environment. Acta Biochim. Biophys. Sin. (Shanghai) 41(7), 561鈥?77 (2009a)CrossRef
    Qian, A., Hu, L., Gao, X., Zhang, W., Di, S., Tian, Z., Yang, P., Yin, D., Weng, Y., Shang, P.: Large gradient high magnetic field affects the association of MACF1 with actin and microtubule cytoskeleton. Bioelectromagnetics 30(7), 545鈥?55 (2009b)CrossRef
    Qian, A., Yin, D., Yang, P., Lv, Y., Tian, Z., Shang, P.: Application of diamagnetic levitation technology in biological sciences research. IEEE Trans. Appl. Supercond. 23(1), 3600305 (2013a)CrossRef
    Qian, A., Gao, X., Zhang, W., Li, J., Wang, Y., Di, S., Hu, L., Shang, P.: Large gradient high magnetic fields affect osteoblast ultrastructure and function by disrupting collagen I or fibronectin/ a 脽1 integrin. PLoS ONE 8(1), e51036 (2013b)CrossRef
    Qian, A., Li, D., Han, J., Gao, X., Di, S., Zhang, W., Hu, L., Peng, S.: Fractal dimension as a measure of altered actin cytoskeleton in MC3T3-E1 cells under simulated microgravity using 3-D/2-D clinostats. IEEE Trans. Biomed. Eng. 59(5), 1374鈥?380 (2012a)CrossRef
    Qian, A., Wang, L., Gao, X., Zhang, W., Hu, L., Han, J., Li, J., Di, S., Shang, P.: Diamagnetic levitation causes changes in the morphology, cytoskeleton, and focal adhesion proteins expression in osteocytes. IEEE Trans. Biomed. Eng. 59(1), 68鈥?7 (2012b)CrossRef
    Qian, A., Yang, P., Hu, L., Zhang, W., Di, S., Wang, Z., Han, J., Gao, X., Shang, P.: High magnetic gradient environment causes alterations of cytoskeleton and cytoskeleton-associated genes in human osteoblasts cultured in vitro. Adv. Space Res. 46(6), 687鈥?00 (2010)CrossRef
    Qian, A., Zhang, W., Weng, Y., Tian, Z., Di, S., Yang, P., Yin, D., Hu, L., Wang, Z., Xu, H., Shang, P.: Gravitational environment produced by a superconducting magnet affects osteoblast morphology and functions. Acta Astronaut. 63(7鈥?0), 929鈥?46 (2008)CrossRef
    Raggatt, L.J., Partridge, N.C.: Cellular and molecular mechanisms of bone remodeling. J. Biol. Chem. 285 (33), 25103鈥?5108 (2010)CrossRef
    Shang, P., Zhang, J., Qian, A., Li, J., Meng, R., Di, S., Hu, L., Gu, Z.: Bone cells under microgravity. J. Mech. Med. Biol. 13(05), 1340006 (2013)CrossRef
    Shi, D., Meng, R., Deng, W., Ding, W., Zheng, Q., Yuan, W., Liu, L., Zong, C., Shang, P., Wang, J.: Effects of microgravity modeled by large gradient high magnetic field on the osteogenic initiation of human mesenchymal stem cells. Stem Cell Rev. 6(4), 567鈥?78 (2010)CrossRef
    Sibonga, J.D., Evans, H.J., Sung, H.G., Spector, E.R., Lang, T.F., Oganov, V.S., Bakulin, A.V., Shackelford, L.C., LeBlanc, A.D.: Recovery of spaceflight-induced bone loss: Bone mineral density after long-duration missions as fitted with an exponential function. Bone 41(6), 973鈥?78 (2007)CrossRef
    Singh, P., Carraher, C., Schwarzbauer, J.E.: Assembly of fibronectin extracellular matrix. Annu. Rev. Cell Dev. Biol. 26, 397鈥?19 (2010)CrossRef
    Sun, Y., Chen, Z., Chen, X., Yin, C., Li, D., Ma, X., Zhao, F., Zhang, G., Shang, P., Qian, A.: Diamagnetic levitation promotes osteoclast differentiation from RAW264.7 cells. IEEE Trans. Biomed. Eng. (2014). doi:10.鈥?109/鈥婽BME.鈥?014.鈥?370039
    Suozzi, K.C., Wu, X., Fuchs, E.: Spectraplakins: master orchestrators of cytoskeletal dynamics. J. Cell Biol. 197(4), 465鈥?75 (2012)CrossRef
    Takeda, S., Elefteriou, F., Levasseur, R., Liu, X., Zhao, L., Parker, K.L., Armstrong, D., Ducy, P., Karsenty, G.: Leptin regulates bone formation via the sympathetic nervous system. Cell 111(3), 305鈥?17 (2002)CrossRef
    Tamma, R., Colaianni, G., Camerino, C., Di Benedetto, A., Greco, G., Strippoli, M., Vergari, R., Grano, A., Mancini, L., Mori, G., Colucci, S., Grano, M., Zallone, A.: Microgravity during spaceflight directly affects in vitro osteoclastogenesis and bone resorption. FASEB J. 23(8), 2549鈥?554 (2009)CrossRef
    van鈥檛 Hof, R.J., Armour, K.J., Smith, L.M., Armour, K.E., Wei, X.Q., Liew, F.Y., Ralston, S.H.: Requirement of the inducible nitric oxide synthase pathway for IL-1-induced osteoclastic bone resorption. Proc. Natl. Acad. Sci. U. S. A. 97(14), 7993鈥?998 (2000)CrossRef
    Vico, L., Lafage-Proust, M.H., Alexandre, C.: Effects of gravitational changes on the bone system in vitro and in vivo. Bone 22(5 Suppl), 95S鈥?00S (1998)CrossRef
    Wimalawansa, S.J.: Nitric oxide and bone. Ann. N. Y. Acad. Sci. 1192(1), 391鈥?03 (2010)CrossRef
    Wu, X., Kodama, A., Fuchs, E.: ACF7 regulates cytoskeletal-focal adhesion dynamics and migration and has ATPase activity. Cell 135(1), 137鈥?48 (2008)CrossRef
    Wuest, S.L., Richard, S., Kopp, S., Grimm, D., Egli, M.: Simulated microgravity: critical review on the use of random positioning machines for mammalian cell culture. Biomed. Res. Int. 2014, 971474 (2014)
    Xu, H., Gu, S., Riquelme, M.A., Burra, S., Callaway, D., Cheng, H., Guda, T., Schmitz, J., Fajardo, R.J., Werner, S.L., Zhao, H., Shang, P., Johnson, M.L., Bonewald, L.F., Jiang, J.X.: Connexin 43 channels are essential for normal bone structure and osteocyte viability. J. Bone Miner. Res. (2014). doi:10.鈥?002/鈥媕bmr.鈥?374
    Xu, H., Wu, J., Weng, Y., Zhang, J., Shang, P.: Two-dimensional clinorotation influences cellular morphology, cytoskeleton and secretion of MLO-Y4 osteocyte-like cells. Biologia 67(1), 255鈥?62 (2012a)CrossRef
    Xu, H., Zhang, J., Wu, J., Guan, Y., Weng, Y., Shang, P.: Oscillatory fluid flow elicits changes in morphology, cytoskeleton and integrin-associated molecules in MLO-Y4 cells, but not in MC3T3-E1 cells. Biol. Res. 45, 163鈥?69 (2012b)CrossRef
    Yang, X., Sun, L., Wu, X., Wang, X., Fan, Y.: Effect of simulated microgravity on osteocytes responding to fluid shear stress. Acta Astronaut. 84, 237鈥?43 (2013)CrossRef
    Zhang, J., Ding, C., Ren, L., Zhou, Y., Shang, P.: The effects of static magnetic fields on bone. Prog. Biophys. Mol. Biol. 114(3), 146鈥?52 (2014a)CrossRef
    Zhang, J., Ding, C., Shang, P.: Alterations of mineral elements in osteoblast during differentiation under hypo, moderate and high static magnetic fields. Biol. Trace Elem. Res. 162(1-3), 153鈥?57 (2014b)CrossRef
    Zheng, H., Yu, X., Collin-Osdoby, P., Osdoby, P.: RANKL stimulates inducible nitric-oxide synthase expression and nitric oxide production in developing osteoclasts. An autocrine negative feedback mechanism triggered by RANKL-induced interferon-beta via NF-kappaB that restrains osteoclastogenesis and bone resorption. J. Biol. Chem. 281(23), 15809鈥?5820 (2006)CrossRef
  • 作者单位:Jian Zhang (1)
    Jingbao Li (1)
    Huiyun Xu (1)
    Pengfei Yang (1)
    Li Xie (1)
    Airong Qian (1)
    Yong Zhao (2)
    Peng Shang (1)

    1. Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, P.O. Box 707, 127 Youyi Xilu, Xi鈥檃n, Shaanxi, 710072, China
    2. State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beichen Westen Road 1-5, Chaoyang District, Beijing, 100101, China
  • 刊物类别:Engineering
  • 刊物主题:Extraterrestrial Physics and Space Sciences
    Aerospace Technology and Astronautics
    Classical Continuum Physics
  • 出版者:Springer Netherlands
  • ISSN:1875-0494
文摘
Severe loss of bone occurs due to long-duration spaceflight. Mechanical loading stimulates bone formation, while bone degradation happens under mechanical unloading. Bone remodeling is a dynamic process in which bone formation and bone resorption are tightly coupled. Increased bone resorption and decreased bone formation caused by reduced mechanical loading, generally result in disrupted bone remodeling. Bone remodeling is orchestrated by multiple bone cells including osteoblast, osteocyte, osteoclast and mesenchymal stem cell. It is yet not clear that how these bone cells sense altered gravity, translate physical stimulus into biochemical signals, and then regulate themselves structurally and functionally. In this paper, studies elucidating the bioeffects of microgravity on bone cells (osteoblast, osteocyte, osteoclast, mesenchymal stem cell) using various platforms including spaceflight and ground-based simulated microgravity were summarized. Promising gravity-sensitive signaling pathways and protein molecules were proposed. Keywords Simulated microgravity Clinostat Diamagnetic levitation Spaceflight osteopenia Bone cells Bone remodeling

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700