用户名: 密码: 验证码:
Efficient L-Alanine Production by a Thermo-Regulated Switch in Escherichia coli
详细信息    查看全文
  • 作者:Li Zhou ; Can Deng ; Wen-Jing Cui ; Zhong-Mei Liu…
  • 关键词:L ; alanine production ; Chromosomal integration ; Escherichia coli ; Metabolic engineering
  • 刊名:Applied Biochemistry and Biotechnology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:178
  • 期:2
  • 页码:324-337
  • 全文大小:573 KB
  • 参考文献:1.Hols, P., Kleerebezem, M., Schanck, A. N., Ferain, T., Hugenholtz, J., Delcour, J., & de Vos, W. M. (1999). Conversion of Lactococcus lactis from homolactic to homoalanine fermentation through metabolic engineering. Nature Biotechnology, 17, 588–592.CrossRef
    2.Lee, M., Smith, G., Eiteman, M., & Altman, E. (2004). Aerobic production of alanine by Escherichia coli aceF ldhA mutants expressing the Bacillus sphaericus alaD gene. Applied Microbiology and Biotechnology, 65, 56–60.
    3.Mallakpour, S., & Dinari, M. (2011). Progress in synthetic polymers based on natural amino acids. Journal of Macromolecular Science-Pure and Applied Chemistry, 48, 644–679.CrossRef
    4.Zhang, X., Jantama, K., Moore, J. C., Shanmugam, K. T., & Ingram, L. O. (2007). Production of L-alanine by metabolically engineered Escherichia coli. Applied Microbiology and Biotechnology, 77, 355–366.CrossRef
    5.Smith, G. M., Lee, S. A., Reilly, K. C., Eiteman, M. A., & Altman, E. (2006). Fed-batch two-phase production of alanine by a metabolically engineered Escherichia coli. Biotechnology Letters, 28, 1695–1700.CrossRef
    6.Wada, M., Narita, K., & Yokota, A. (2007). Alanine production in an H+-ATPase- and lactate dehydrogenase-defective mutant of Escherichia coli expressing alanine dehydrogenase. Applied Microbiology and Biotechnology, 76, 819–825.CrossRef
    7.Zhou, L., Niu, D., Tian, K., Chen, X., Prior, B. A., Shen, W., Shi, G., Singh, S., & Wang, Z. (2012). Genetically switched D-lactate production in Escherichia coli. Metabolic Engineering, 14, 560–568.CrossRef
    8.Elvin, C. M., Thompson, P. R., Argall, M. E., Philip Hendr, N., Stamford, P. J., Lilley, P. E., & Dixon, N. E. (1990). Modified bacteriophage lambda promoter vectors for overproduction of proteins in Escherichia coli. Gene, 87, 123–126.CrossRef
    9.Love, C. A., Lilley, P. E., & Dixon, N. E. (1996). Stable high-copy-number bacteriophage [lambda] promoter vectors for overproduction of proteins in Escherichia coli. Gene, 176, 49–53.CrossRef
    10.Datsenko, K. A., & Wanner, B. L. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences of the United States of America, 97, 6640–6645.CrossRef
    11.Zhou, L., Zuo, Z., Chen, X., Niu, D., Tian, K., Prior, B. A., Shen, W., Shi, G., Singh, S., & Wang, Z. (2011). Evaluation of genetic manipulation strategies on D-lactate production by Escherichia coli. Current Microbiology, 62, 981–989.CrossRef
    12.Kim, S. H., Schneider, B. L., & Reitzer, L. (2010). Genetics and regulation of the major enzymes of alanine synthesis in Escherichia coli. Journal of Bacteriology, 192, 5304–5311.CrossRef
    13.Villaverde, A., Benito, A., Viaplana, E., & Cubarsi, R. (1993). Fine regulation of cI857-controlled gene expression in continuous culture of recombinant Escherichia coli by temperature. Applied and Environmental Microbiology, 59, 3485–3487.
    14.Hashimoto, S.-I., & Katsumata, R. (1998). L-alanine fermentation by an alanine racemase-deficient mutant of the DL-alanine hyperproducing bacterium Arthrobacter oxydans HAP-1. Journal of Fermention and Bioengineering, 86, 385–390.CrossRef
    15.Uhlenbusch, I., Sahm, H., & Sprenger, G. A. (1991). Expression of an L-alanine dehydrogenase gene in Zymomonas mobilis and excretion of L-alanine. Applied and Environmental Microbiology, 57, 1360–1366.
    16.Ratkowsky, D. A., Lowry, R. K., McMeekin, T. A., Stokes, A. N., & Chandler, R. E. (1983). Model for bacterial culture growth rate throughout the entire biokinetic temperature range. Journal of Bacteriology, 154, 1222–1226.
    17.Zhou, L., Tian, K., Niu, D., Shen, W., Shi, G. Y., Singh, S., & Wang, Z. (2012). Improvement of D-lactate productivity in recombinant Escherichia coli by coupling production with growth. Biotechnology Letters, 34, 1123–1130.CrossRef
    18.Yuan, L. Z., Rouvière, P. E., LaRossa, R. A., & Suh, W. (2006). Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli. Metabolic Engineering, 8, 79–90.CrossRef
    19.Sandoval-Basurto, E. A., Gosset, G., Bolivar, F., & Ramirez, O. T. (2005). Culture of Escherichia coli under dissolved oxygen gradients simulated in a two-compartment scale-down system: metabolic response and production of recombinant protein. Biotechnology and Bioengineering, 89, 453–463.CrossRef
    20.Lara, A. R., Leal, L., Flores, N., Gosset, G., Bolívar, F., & Ramírez, O. T. (2006). Transcriptional and metabolic response of recombinant Escherichia coli to spatial dissolved oxygen tension gradients simulated in a scale-down system. Biotechnology and Bioengineering, 93, 372–385.CrossRef
    21.Caspeta, L., Flores, N., Pérez, N. O., Bolívar, F., & Ramírez, O. T. (2009). The effect of heating rate on Escherichia coli metabolism, physiological stress, transcriptional response, and production of temperature-induced recombinant protein: a scale-down study. Biotechnology and Bioengineering, 102, 468–482.CrossRef
    22.Abdel-Banat, B. M., Hoshida, H., Ano, A., Nonklang, S., & Akada, R. (2010). High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? Applied Microbiology and Biotechnology, 85, 861–867.CrossRef
  • 作者单位:Li Zhou (1) (2)
    Can Deng (2)
    Wen-Jing Cui (1) (2)
    Zhong-Mei Liu (1) (2)
    Zhe-Min Zhou (1) (2)

    1. The Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People’s Republic of China
    2. Center for Bioresource & Bioenergy, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Biochemistry
  • 出版者:Humana Press Inc.
  • ISSN:1559-0291
文摘
L-Alanine has important applications in food, pharmaceutical and veterinary and is used as a substrate for production of engineered thermoplastics. Microbial fermentation could reduce the production cost and promote the application of L-alanine. However, the presence of L-alanine significantly inhibit cell growth rate and cause a decrease in the ultimate L-alanine productivity. For efficient l-alanine production, a thermo-regulated genetic switch was designed to dynamically control the expression of l-alanine dehydrogenase (alaD) from Geobacillus stearothermophilus on the Escherichia coli B0016-060BC chromosome. The optimal cultivation conditions for the genetically switched alanine production using B0016-060BC were the following: an aerobic growth phase at 33 °C with a 1-h thermo-induction at 42 °C followed by an oxygen-limited phase at 42 °C. In a bioreactor experiment using the scaled-up conditions optimized in a shake flask, B0016-060BC accumulated 50.3 g biomass/100 g glucose during the aerobic growth phase and 96 g alanine/100 g glucose during the oxygen-limited phase, respectively. The L-alanine titer reached 120.8 g/l with higher overall and oxygen-limited volumetric productivities of 3.09 and 4.18 g/l h, respectively, using glucose as the sole carbon source. Efficient cell growth and L-alanine production were reached separately, by switching cultivation temperature. The results revealed the application of a thermo-regulated strategy for heterologous metabolic production and pointed to strategies for improving L-alanine production. Keywords L-alanine production Chromosomal integration Escherichia coli Metabolic engineering

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700