用户名: 密码: 验证码:
Effect of amitriptyline on tetrodotoxin-resistant Nav1.9 currents in nociceptive trigeminal neurons
详细信息    查看全文
  • 作者:Jingyao Liang (3)
    Xiaoyan Liu (4)
    Jianquan Zheng (4)
    Shengyuan Yu (3)
  • 关键词:Amitriptyline ; Nav1.9 ; Patch clamp ; Trigeminal ganglion ; Pain
  • 刊名:Molecular Pain
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:9
  • 期:1
  • 全文大小:459KB
  • 参考文献:1. Wong MC, Chung JW, Wong TK: Effects of treatments for symptoms of painful diabetic neuropathy: systematic review. / BMJ 2007, 335:87. CrossRef
    2. Smitherman TA, Walters AB, Maizels M, Penzien DB: The use of antidepressants for headache prophylaxis. / CNS Neurosci Ther 2011, 17:462-69. CrossRef
    3. Coluzzi F, Mattia C: Mechanism-based treatment in chronic neuropathic pain: the role of antidepressants. / Curr Pharm Des 2005, 11:2945-960. CrossRef
    4. Onghena P, Van Houdenhove B: Antidepressant-induced analgesia in chronic non-malignant pain: a meta-analysis of 39 placebo-controlled studies. / Pain 1992, 49:205-19. CrossRef
    5. Mao QX, Yang TD: Amitriptyline upregulates EAAT1 and EAAT2 in neuropathic pain rats. / Brain Res Bull 2010, 81:424-27. CrossRef
    6. Dick IE, Brochu RM, Purohit Y, Kaczorowski GJ, Martin WJ, Priest BT: Sodium channel blockade may contribute to the analgesic efficacy of antidepressants. / J Pain 2007, 8:315-24. CrossRef
    7. Gerner P, Srinivasa V, Zizza AM, Zhuang ZY, Luo S, Zurakowski D, Eappen S, Wang G: Doxepin by topical application and intrathecal route in rats. / Anesth Analg 2006, 102:283-87. CrossRef
    8. Brau ME, Dreimann M, Olschewski A, Vogel W, Hempelmann G: Effect of drugs used for neuropathic pain management on tetrodotoxin-resistant Na(+) currents in rat sensory neurons. / Anesthesiology 2001, 94:137-44. CrossRef
    9. Sudoh Y, Cahoon EE, Gerner P, Wang GK: Tricyclic antidepressants as long-acting local anesthetics. / Pain 2003, 103:49-5. CrossRef
    10. Catterall WA, Goldin AL, Waxman SG: International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. / Pharmacol Rev 2005, 57:397-09. CrossRef
    11. Thorstrand C, Bergstrom J, Castenfors J: Cardiac effects of amitriptyline in rats. / Scand J Clin Lab Invest 1976, 36:7-5. CrossRef
    12. Ishii Y, Sumi T: Amitriptyline inhibits striatal efflux of neurotransmitters via blockade of voltage-dependent Na-?channels. / Eur J Pharmacol 1992, 221:377-80. CrossRef
    13. Pancrazio JJ, Kamatchi GL, Roscoe AK, Lynch C 3rd: Inhibition of neuronal Na-?channels by antidepressant drugs. / J Pharmacol Exp Ther 1998, 284:208-14.
    14. Yan L, Wang Q, Fu Q, Ye Q, Xiao H, Wan Q: Amitriptyline inhibits currents and decreases the mRNA expression of voltage-gated sodium channels in cultured rat cortical neurons. / Brain Res 2010, 1336:1-. CrossRef
    15. Song JH, Ham SS, Shin YK, Lee CS: Amitriptyline modulation of Na(+) channels in rat dorsal root ganglion neurons. / Eur J Pharmacol 2000, 401:297-05. CrossRef
    16. Leffler A, Reiprich A, Mohapatra DP, Nau C: Use-dependent block by lidocaine but not amitriptyline is more pronounced in tetrodotoxin (TTX)-Resistant Nav1.8 than in TTX-sensitive Na-?channels. / J Pharmacol Exp Ther 2007, 320:354-64. CrossRef
    17. Hur YK, Choi IS, Cho JH, Park EJ, Choi JK, Choi BJ, Jang IS: Effects of carbamazepine and amitriptyline on tetrodotoxinresistant Na-?channels in immature rat trigeminal ganglion neurons. / Arch Pharm Res 2008, 31:178-82. CrossRef
    18. Akopian AN, Sivilotti L, Wood JN: A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. / Nature 1996, 379:257-62. CrossRef
    19. Ebersberger A, Natura G, Eitner A, Halbhuber KJ, Rost R, Schaible HG: Effects of prostaglandin D2 on tetrodotoxin-resistant Na-?currents in DRG neurons of adult rat. / Pain 2011, 152:1114-126. CrossRef
    20. Roy ML, Narahashi T: Differential properties of tetrodotoxin-sensitive and tetrodotoxin-resistant sodium channels in rat dorsal root ganglion neurons. / J Neurosci 1992, 12:2104-111.
    21. Dib-Hajj S, Black JA, Cummins TR, Waxman SG: NaN/Nav1.9: a sodium channel with unique properties. / Trends Neurosci 2002, 25:253-59. CrossRef
    22. Cummins TR, Dib-Hajj SD, Black JA, Akopian AN, Wood JN, Waxman SG: A novel persistent tetrodotoxin-resistant sodium current in SNS-null and wild-type small primary sensory neurons. / J Neurosci 1999, 19:RC43.
    23. Coste B, Osorio N, Padilla F, Crest M, Delmas P: Gating and modulation of presumptive NaV1.9 channels in enteric and spinal sensory neurons. / Mol Cell Neurosci 2004, 26:123-34. CrossRef
    24. Renganathan M, Cummins TR, Waxman SG: Contribution of Na(v)1.8 sodium channels to action potential electrogenesis in DRG neurons. / J Neurophysiol 2001, 86:629-40.
    25. Rush AM, Cummins TR, Waxman SG: Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons. / J Physiol 2007, 579:1-4. CrossRef
    26. Ostman JA, Nassar MA, Wood JN, Baker MD: GTP up-regulated persistent Na-?current and enhanced nociceptor excitability require NaV1.9. / J Physiol 2008, 586:1077-087. CrossRef
    27. Amaya F, Decosterd I, Samad TA, Plumpton C, Tate S, Mannion RJ, Costigan M, Woolf CJ: Diversity of expression of the sensory neuron-specific TTX-resistant voltage-gated sodium ion channels SNS and SNS2. / Mol Cell Neurosci 2000, 15:331-42. CrossRef
    28. Eriksson J, Jablonski A, Persson AK, Hao JX, Kouya PF, Wiesenfeld-Hallin Z, Xu XJ, Fried K: Behavioral changes and trigeminal ganglion sodium channel regulation in an orofacial neuropathic pain model. / Pain 2005, 119:82-4. CrossRef
    29. Djouhri L, Fang X, Okuse K, Wood JN, Berry CM, Lawson SN: The TTX-resistant sodium channel Nav1.8 (SNS/PN3): expression and correlation with membrane properties in rat nociceptive primary afferent neurons. / J Physiol 2003, 550:739-52. CrossRef
    30. Fang X, Djouhri L, McMullan S, Berry C, Waxman SG, Okuse K, Lawson SN: Intense isolectin-B4 binding in rat dorsal root ganglion neurons distinguishes C-fiber nociceptors with broad action potentials and high Nav1.9 expression. / J Neurosci 2006, 26:7281-292. CrossRef
    31. Liang J, Yu S, Dong Z, Wang X, Liu R, Chen X, Li Z: The effects of OB-induced depression on nociceptive behaviors induced by electrical stimulation of the dura mater surrounding the superior sagittal sinus. / Brain Res 2011, 1424:9-9. CrossRef
    32. Fang Z, Park CK, Li HY, Kim HY, Park SH, Jung SJ, Kim JS, Monteil A, Oh SB, Miller RJ: Molecular basis of Ca(v)2.3 calcium channels in rat nociceptive neurons. / J Biol Chem 2007, 282:4757-764. CrossRef
    33. Wang GK, Russell C, Wang SY: State-dependent block of voltage-gated Na-?channels by amitriptyline via the local anesthetic receptor and its implication for neuropathic pain. / Pain 2004, 110:166-74. CrossRef
    34. Glotzbach RK, Preskorn SH: Brain concentrations of tricyclic antidepressants: single-dose kinetics and relationship to plasma concentrations in chronically dosed rats. / Psychopharmacology (Berl) 1982, 78:25-7. CrossRef
    35. Karson CN, Newton JE, Livingston R, Jolly JB, Cooper TB, Sprigg J, Komoroski RA: Human brain fluoxetine concentrations. / J Neuropsychiatry Clin Neurosci 1993, 5:322-29.
    36. John VH, Main MJ, Powell AJ, Gladwell ZM, Hick C, Sidhu HS, Clare JJ, Tate S, Trezise DJ: Heterologous expression and functional analysis of rat Nav1.8 (SNS) voltage-gated sodium channels in the dorsal root ganglion neuroblastoma cell line ND7-3. / Neuropharmacology 2004, 46:425-38. CrossRef
    37. Ong BH, Tomaselli GF, Balser JR: A structural rearrangement in the sodium channel pore linked to slow inactivation and use dependence. / J Gen Physiol 2000, 116:653-62. CrossRef
    38. Barber MJ, Starmer CF, Grant AO: Blockade of cardiac sodium channels by amitriptyline and diphenylhydantoin. Evidence for two use-dependent binding sites. / Circ Res 1991, 69:677-96. CrossRef
    39. Nau C, Wang GK: Interactions of local anesthetics with voltage-gated Na-?channels. / J Membr Biol 2004, 201:1-. CrossRef
    40. Zhang XF, Shieh CC, Chapman ML, Matulenko MA, Hakeem AH, Atkinson RN, Kort ME, Marron BE, Joshi S, Honore P, / et al.: A-887826 is a structurally novel, potent and voltage-dependent Na(v)1.8 sodium channel blocker that attenuates neuropathic tactile allodynia in rats. / Neuropharmacology 2010, 59:201-07. CrossRef
    41. Gilchrist J, Bosmans F: Animal toxins can alter the function of Nav1.8 and Nav1.9. / Toxins (Basel) 2012, 4:620-32. CrossRef
    42. Crill WE: Persistent sodium current in mammalian central neurons. / Annu Rev Physiol 1996, 58:349-62. CrossRef
    43. Maingret F, Coste B, Padilla F, Clerc N, Crest M, Korogod SM, Delmas P: Inflammatory mediators increase Nav1.9 current and excitability in nociceptors through a coincident detection mechanism. / J Gen Physiol 2008, 131:211-25. CrossRef
    44. Priest BT, Murphy BA, Lindia JA, Diaz C, Abbadie C, Ritter AM, Liberator P, Iyer LM, Kash SF, Kohler MG, / et al.: Contribution of the tetrodotoxin-resistant voltage-gated sodium channel NaV1.9 to sensory transmission and nociceptive behavior. / Proc Natl Acad Sci USA 2005, 102:9382-387. CrossRef
    45. Amaya F, Wang H, Costigan M, Allchorne AJ, Hatcher JP, Egerton J, Stean T, Morisset V, Grose D, Gunthorpe MJ, / et al.: The voltage-gated sodium channel Na(v)1.9 is an effector of peripheral inflammatory pain hypersensitivity. / J Neurosci 2006, 26:12852-2860. CrossRef
    46. Lolignier S, Amsalem M, Maingret F, Padilla F, Gabriac M, Chapuy E, Eschalier A, Delmas P, Busserolles J: Nav1.9 channel contributes to mechanical and heat pain hypersensitivity induced by subacute and chronic inflammation. / PLoS One 2011, 6:e23083. CrossRef
    47. Rush AM, Waxman SG: PGE2 increases the tetrodotoxin-resistant Nav1.9 sodium current in mouse DRG neurons via G-proteins. / Brain Res 2004, 1023:264-71. CrossRef
    48. Cummins TR, Black JA, Dib-Hajj SD, Waxman SG: Glial-derived neurotrophic factor upregulates expression of functional SNS and NaN sodium channels and their currents in axotomized dorsal root ganglion neurons. / J Neurosci 2000, 20:8754-761.
    49. Andlin-Sobocki P, Jonsson B, Wittchen HU, Olesen J: Cost of disorders of the brain in Europe. / Eur J Neurol 2005,12(Suppl 1):1-7. CrossRef
    50. Yu S, Liu R, Zhao G, Yang X, Qiao X, Feng J, Fang Y, Cao X, He M, Steiner T: The prevalence and burden of primary headaches in China: a population-based door-to-door survey. / Headache 2012, 52:582-91. CrossRef
    51. Pietrobon D: Migraine: new molecular mechanisms. / Neuroscientist 2005, 11:373-86. CrossRef
    52. Burstein R: Deconstructing migraine headache into peripheral and central sensitization. / Pain 2001, 89:107-10. CrossRef
    53. Wu W, Ye Q, Wang W, Yan L, Wang Q, Xiao H, Wan Q: Amitriptyline modulates calcium currents and intracellular calcium concentration in mouse trigeminal ganglion neurons. / Neurosci Lett 2012, 506:307-11. CrossRef
    54. Antonova M, Wienecke T, Olesen J, Ashina M: Prostaglandin E(2) induces immediate migraine-like attack in migraine patients without aura. / Cephalalgia 2012, 32:822-33. CrossRef
    55. Neeb L, Hellen P, Boehnke C, Hoffmann J, Schuh-Hofer S, Dirnagl U, Reuter U: IL-1beta stimulates COX-2 dependent PGE(2) synthesis and CGRP release in rat trigeminal ganglia cells. / PLoS One 2011, 6:e17360. CrossRef
    56. Giniatullin R, Nistri A, Fabbretti E: Molecular mechanisms of sensitization of pain-transducing P2X3 receptors by the migraine mediators CGRP and NGF. / Mol Neurobiol 2008, 37:83-0. CrossRef
    57. Magni G, Ceruti S: P2Y purinergic receptors: New targets for analgesic and antimigraine drugs. / Biochem Pharmacol 2013, 85:466-77. CrossRef
    58. Shimizu T: TRPV1 receptor as a therapeutical target for the treatment of migraine. / Brain Nerve 2009, 61:949-56.
    59. Zimmermann M: Ethical guidelines for investigations of experimental pain in conscious animals. / Pain 1983, 16:109-10. CrossRef
    60. Park CK, Bae JH, Kim HY, Jo HJ, Kim YH, Jung SJ, Kim JS, Oh SB: Substance P sensitizes P2X3 in nociceptive trigeminal neurons. / J Dent Res 2010, 89:1154-159. CrossRef
  • 作者单位:Jingyao Liang (3)
    Xiaoyan Liu (4)
    Jianquan Zheng (4)
    Shengyuan Yu (3)

    3. Department of Neurology, Chinese PLA General Hospital, Beijing, 100853, PR China
    4. Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
文摘
Background Amitriptyline (AMI) is tricyclic antidepressant that has been widely used to manage various chronic pains such as migraines. Its efficacy is attributed to its blockade of voltage-gated sodium channels (VGSCs). However, the effects of AMI on the tetrodotoxin-resistant (TTX-r) sodium channel Nav1.9 currents have been unclear to present. Results Using a whole-cell patch clamp technique, this study showed that AMI efficiently inhibited Nav1.9 currents in a concentration-dependent manner and had an IC50 of 15.16?μM in acute isolated trigeminal ganglion (TG) neurons of the rats. 10?μM AMI significantly shifted the steady-state inactivation of Nav1.9 channels in the hyperpolarizing direction without affecting voltage-dependent activation. Surprisingly, neither 10 nor 50?μM AMI caused a use-dependent blockade of Nav1.9 currents elicited by 60 pulses at 1?Hz. Conclusion These data suggest that AMI is a state-selective blocker of Nav1.9 channels in rat nociceptive trigeminal neurons, which likely contributes to the efficacy of AMI in treating various pains, including migraines.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700