用户名: 密码: 验证码:
Nanoindentation Mechanical Properties of a Bi-phase Cu29Zr32Ti15Al5Ni19 Alloy
详细信息    查看全文
  • 作者:JinHong Pi ; ZhangZhong Wang ; XianCong He…
  • 关键词:creep ; hardness ; high ; entropy alloy ; modulus ; nanoindentation ; wear resistance
  • 刊名:Journal of Materials Engineering and Performance
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:25
  • 期:1
  • 页码:76-82
  • 全文大小:1,642 KB
  • 参考文献:1.Z.J. Wang, S. Guo, Q. Wang, Z.Y. Liu, J.C. Wang, Y. Yang, and C.T. Liu, Nanoindentation characterized initial creep behavior of a high-entropy-based alloy CoFeNi, Intermetallics, 2014, 53, p 183–186CrossRef
    2.C. Sajith Babu, K. Sivaprasad, V. Muthupandi, and J.A. Szpunar, Characterization of nanocrystalline AlCoCrCuNiFeZn high entropy alloy produced by mechanical alloying, Procedia Mater. Sci., 2014, 5, p 1020–1026CrossRef
    3.X. Yang and Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Mater. Chem. Phys., 2012, 132, p 233–238CrossRef
    4.Y. Sun, G.F. Zhao, X.Y. Wen, J.W. Qiao, and F.Q. Yang, Nanoindentation deformation of a bi-phase AlCrCuFeNi2 alloy, J. Alloys Compd., 2014, 608, p 49–53CrossRef
    5.M. Vaidy, S. Armugam, S. Kashyap, and B.S. Murty, Amorphization in equiatomic high entropy alloys, J. Non-Cryst. Solids, 2015, 413, p 8–14CrossRef
    6.C. Zhu, Z.P. Lu, and T.G. Nieh, Incipient plasticity and dislocation nucleation of FeCoCrNiMn, Acta Mater., 2013, 61, p 2993–3001CrossRef
    7.Y. Ma, G.J. Peng, D.H. Wen, and T.H. Zhang, Nanoindentation creep behavior in a CoCrFeCuNi high-entropy alloy film with two different structure states, Mater. Sci. Eng. A, 2015, 621, p 111–117CrossRef
    8.J.L. Wu, Y. Pan, and J.H. Pi, Evaluation of Cu–Zr–Ti–In bulk metallic glasses via nanoindentation, J. Mater. Eng. Perform., 2013, 22, p 2288–2292CrossRef
    9.A.C. Fischer-Cripps, Nanoindentation, 3rd ed., Springer, New York, 2011CrossRef
    10.M.J. Cordill, M.S. Lund, J. Parker, C. Leighton, A.K. Nair, D. Farkas, N.R. Moody, and W.W. Gerberich, The Nano-Jackhammer effect in probing near-surface mechanical properties, Int. J. Plast., 2009, 25(p2), p 045–2058
    11.T.H. Zhang, Micro/nanomechanical testing technology, 1st ed., Science Press, Peking, 2013
    12.J.H. Pi, X.C. He, and Z.Z. Wang, Preparation high entropy alloy Cu29Zr32Ti15Al5Ni19 with high glass forming ability, Rare Metal Mater. Eng., 2016, online preview website: http://​rmme.​ijournal.​cn/​rmme/​ch/​reader/​view_​abstract.​aspx?​flag=​2&​file_​no=​201505150000002&​journal_​id=​rmme#
    13.J.J. Roa, G. Fargas, A. Mateo, and E. Jiménez-Piqué, Dependence of nanoindentation hardness with crystallographic orientation of austenite grains in metastable stainless steels, Mater. Sci. Eng. A, 2015, 645, p 188–195CrossRef
    14.C. Li and L.C. Zhang, Mechanical behaviour characterisation of silicon and effect of loading rate on pop-in: a nanoindentation study under ultra-low loads, Mater. Sci. Eng. A, 2009, 506, p 125–129CrossRef
    15.W.H. Li, K. Shin, C.G. Lee, B.C. Wei, T.H. Zhang, and Y.Z. He, The Characterization of creep and time-dependent properties of bulk metallic glasses using nanoindentation, Mater. Sci. Eng. A, 2008, 478, p 371–375CrossRef
    16.J.L. Hay and G.M. Pharr, Instrumented indentation testing, materials, ASM International, Park, OH, 2000, p 232–243
    17.W.C. Oliver and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 1992, 7(6), p 1564–1583CrossRef
    18.Y.I. Golovin, Nanoindentation and mechanical properties of solids in submicrovolumes, thin near-surface layers, and films: a review, Phys. Solids State, 2008, 50(2), p 2205–2236CrossRef
    19.R.D. Dar and Y. Chen, Nanoindentation studies of small-scale martensitic transformations and ductile precipitate effects in dual-phase polycrystalline shape memory alloys, Acta Mater., 2015, 91, p 112–127CrossRef
    20.K. Xiong and J.F. Gu, Understanding pop-in phenomena in FeNi3 nanoindentation, Intermetallics, 2015, 67, p 111–120CrossRef
    21.M.R. VanLandingham, Review of instrumented indentation, J. Res. Natl. Inst. Stand. Technol., 2003, 108(4), p 249–265CrossRef
  • 作者单位:JinHong Pi (1) (2)
    ZhangZhong Wang (1) (2)
    XianCong He (1) (2)
    YunQiang Bai (1) (2)

    1. Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing, 211167, China
    2. School of Materials Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Characterization and Evaluation Materials
    Materials Science
    Tribology, Corrosion and Coatings
    Quality Control, Reliability, Safety and Risk
    Engineering Design
  • 出版者:Springer New York
  • ISSN:1544-1024
文摘
Mechanical properties of cylindrical bi-phasic high-entropy alloy Cu29Zr32Ti15Al5Ni19 (3 mm in diameter) were characterized by nanoindentation test in each phase. The results show that the constituent FCC phase is of low nanohardness (2.35 GPa) and modulus (60.9 GPa), while another constituent phase in the alloy, the HCP phase, shows much higher nanohardness (6.5 GPa) and modulus (115.3 GPa). Creep occurs in both phases during the indentation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700