用户名: 密码: 验证码:
Development and characterization of BAC-end sequence derived SSRs, and their incorporation into a new higher density genetic map for cultivated peanut (Arachis hypogaea L.)
详细信息    查看全文
  • 作者:Hui Wang (1) (4)
    R Varma Penmetsa (2)
    Mei Yuan (1)
    Limin Gong (3)
    Yongli Zhao (4)
    Baozhu Guo (5)
    Andrew D Farmer (6)
    Benjamin D Rosen (2)
    Jinliang Gao (2)
    Sachiko Isobe (7)
    David J Bertioli (8)
    Rajeev K Varshney (9)
    Douglas R Cook (2)
    Guohao He (3)
  • 刊名:BMC Plant Biology
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:12
  • 期:1
  • 全文大小:503KB
  • 参考文献:1. Naidu RA, Kimmins FM, Deom CM, Subrahmanyam P, Chiyembekeza AJ, van der Merwe PJA: Groundnut rosette: a virus disease affecting groundnut production in sub-Saharan Africa. / Plant Dis 1999, 83:700鈥?09. CrossRef
    2. Savage GP, Keenan JI: The composition and nutritive value of groundnut kernels. In / The Groundnut Crop: A Scientific Basis for Improvement. Edited by: Smartt J. London: Chapman & Hall; 1994:173鈥?13.
    3. Sprent J: Nitrogen fixation. In / The Groundnut Crop A Scientific Basis for Improvement. Edited by: Smartt J. London: Chapman & Hall; 1994.
    4. Arumuganatham , Earle : Nuclear DNA content of some important plant species. / Plant Mol Biol Rep 1991, 9:211鈥?15.
    5. Kochert G, Halward T, Branch WD, Simpson CE: RFLP variability in peanut ( Arachis hypogaea L.) cultivars and wild species. / Theor Appl Genet 1991, 81:565鈥?70. CrossRef
    6. Halward TM, Stalker HT, Larue EA, Kochert G: Genetic variation detectable with molecular markers among unadapted germplasm resources of cultivated peanut and related wild species. / Genome 1991, 34:1013鈥?020. CrossRef
    7. Halward TM, Stalker HT, LaRue E, Kochert G: Use of single-primer DNA amplification in genetic studies of peanut ( Arachis hypogaea L.). / Plant Mol Biol 1992, 18:315鈥?25. CrossRef
    8. Paik-Ro OG, Smith RL, Knauft DA: Restriction fragment length polymorphism evaluation of six peanut species within the Arachis section. / Theor Appl Genet 1992, 84:201鈥?08. CrossRef
    9. Stalker HT, Phillips TD, Murphy JP, Jones TM: Variation of isozyme patterns among Arachis species. / Theor Appl Genet 1994, 87:746鈥?55. CrossRef
    10. Subramanian V, Gurtu S, Rao RCN, Nigam SN: Identification of DNA polymorphism in cultivated groundnut using random amplified polymorphic DNA (RAPD) assay. / Genome 2000,43(4):656鈥?60. CrossRef
    11. Kochert G, Stalker HT, Gimenes M, Galgaro L, Lopes CR, Moore K: RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae). / Am J Bot 1996, 83:1282鈥?291. CrossRef
    12. Seijo JG, Lavia GL, Fernandez A, Krapovickas A, Ducasse D, Moscone EA: Physical mapping of the 5S and 18S-25S rRNA genes by FISH as evidence that Arachis duranensis and A. ipaensis are the wild diploid progenitors of A. hypogaea (Leguminosae). / Am J Bot 2004, 9:1294鈥?303. CrossRef
    13. Seijo GJ, Lavia GI, Fernandez A, Krapovickas A, Ducasse D, Bertioli DJ, Moscone DEA: Genomic relationships between the cultivated peanut ( Arachis hypogaea - Leguminosae) and its close relatives revealed by double GISH. / Am J Bot 2007, 94:1963鈥?971. CrossRef
    14. Favero AP, Simpson CE, Valls JFM, Vello NA: Study of the evolution of cultivated peanut through crossability studies among Arachis ipaensis, A. duranensis , and A. hypogaea . / Crop Sci 2006, 46:1546鈥?552. CrossRef
    15. Burow MD, Simpson CE, Faries MW, Starr JL, Paterson AH: Molecular biogeographic study of recently described B- and A-genome Arachis species, also providing new insights into the origins of cultivated peanut. / Genome 2009, 52:107鈥?19. CrossRef
    16. Hopkins MS, Casa AM, Wang T, Mitchell SE, Dean RE, Kochert GD, Kresovich S: Discovery and characterization of polymorphic simple sequence repeats (SSRs) in peanut. / Crop Sci 1999, 39:1243鈥?247. CrossRef
    17. He GH, Meng RH, Newman M, Gao GQ, Pittman RN, Prakash CS: Microsatellites as DNA markers in cultivated peanut ( Arachis hypogaea L.). / BMC Plant Biol 2003, 3:3. CrossRef
    18. He GH, Meng RH, Gao H, Guo B, Gao G, Newman M, Pittman RN, Prakash CS: Simple sequence repeat markers for botanical varieties of cultivated peanut ( Arachis hypogaea L.). / Euphytica 2005, 142:131鈥?36. CrossRef
    19. Ferguson ME, Burow MD, Schulze SR, Bramel PJ, Paterson AH, Kresovich S, Mitchell S: Microsatellite identification and characterization in peanut ( A. hypogaea L.). / Theor Appl Genet 2004, 108:1064鈥?070. CrossRef
    20. Moretzsohn MC, Hopkins MS, Mitchell SE, Kresovich S, Valls JFM, Ferreira ME: Genetic diversity of peanut ( Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome. / BMC Plant Biol 2004, 4:11. CrossRef
    21. Moretzsohn MC, Leoi L, Proite K, Guimaraes PM, Leal-Bertioli SCM, Gimenes MA, Martins WS, Valls JFM, Grattapaglia D, Bertioli DJ: A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). / Theor Appl Genet 2005,111(6):1060鈥?071. CrossRef
    22. Proite K, Leal-Bertioli SCM, Bertioli DJ, Moretzsohn MC, da Silva FR, Martins NF, Guimaraes PM: ESTs from a wild Arachis species for gene discovery and marker development. / BMC Plant Biol 2007, 7:7. CrossRef
    23. Cuc LM, Mace ES, Crouch JH, Quang VD, Long TD, Varshney RK: Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut ( Arachis hypogaea L.). / BMC Plant Biol 2008, 8:55. CrossRef
    24. Leal-Bertioli SCM, Jose Ana CVF, Freitas Dione MTA, Moretzsohn MC, Guimaraes PM, Nielen S, Vidigal BS, Pereira RW, Pike J, Favero AP, Parniske M, Varshney RK, Bertioli DJ: Identification of candidate genome regions controlling disease resistance in Arachis . / BMC Plant Biol 2009, 9:112. CrossRef
    25. Gautami B, Ravi K, Lakshmi NM, Hoisington DA, Varshney RK: Novel set of groundnut SSRs for genetic diversity and interspecific transferability. / Int J Integr Biol 2009, 7:100鈥?06.
    26. Bertioli D, Moretzsohn M, Madsen LH, Sandal N, Leal-Bertioli S, Guimar茫es P, Hougaard BK, Fredslund J, Schauser L, Nielsen AM, Sato S, Tabata S, Cannon S, Stougaard J: An analysis of synteny of Arachis with Lotus and Medicago sheds new light on the structure, stability and evolution of legume genomes. / BMC Genomics 2009, 10:45. CrossRef
    27. Moretzsohn MC, Barbosa AVG, Alves-freitas DMT, Teizeira C, Leal-Bertioli SCM, Guimaraes PM, Pereira RW, Lopes CR, Cavallari MM, Valls JFM, Bertioli DJ, Gimenes MA: A linkage map for the B-genome of Arachis (Fabaceae) and its synteny to the A-genome. / BMC Plant Biol 2009, 9:40. CrossRef
    28. Fonceka D, Hodo-Abalo T, Rivallan R, Faye I, Ndoye M, Ndoye O, Favero AP, Bertioli DJ, Glaszmann JC, Courtois B, Rami JF: Genetic mapping of wild introgressions into cultivated peanut: a way toward enlarging the genetic basis of a recent allotetraploid. / BMC Plant Biol 2009, 9:103. CrossRef
    29. Hong YB, Liang XQ, Chen XP, Liu HY, Zhou GY, Li SX, Wen SJ: Construction of genetic linkage map based on SSR markers in peanut ( Arachis hypogaea L.). / Agric Sci in China 2008,7(8):915鈥?21. CrossRef
    30. Varshney RK, Bertioli DJ, Moretzsohn MC, Vadez V, Krishramurthy L, Aruma R, Nigam SN, Moss BJ, Seetha K, Ravi K, He GH, Knapp SJ, Hoisington DA: The first SSR-based genetic linkage map for cultivated groundnut ( Arachis hypogaea L.). / Theor Appl Genet 2009,118(4):729鈥?9. CrossRef
    31. Khedikar YP, Gowda MVC, Sarvamangala C, Patgar KV, Upadhyaya HD, Varshney RK: A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut ( Arachis hypogaea L.). / Theor Appl Genet 2010, 121:971鈥?84. CrossRef
    32. Ravi K, Vadez V, Isobe S, Mir RR, Guo Y, Nigam SN, Gowda MVC, Radhakrishnan T, Bertioli DJ, Knapp SJ, Varshney RK: Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut ( Arachis hypogaea L.). / Theor Appl Genet 2011, 122:1119鈥?132. CrossRef
    33. Sarvamangala C, Gowda MVC, Varshney RK: Identification of quantitative trait loci for protein content, oil content and oil quality for groundnut (Arachis hypogaea L.). / Field Crops Res 2011. doi:10.1016/j.fcr.2011.02.010
    34. Yu JZ, Kohel RJ, Dong J: Development of integrative SSR markers from TM-1 BACs. In / Proceeding of Beltwide Cotton Improvement Conference. Atlanta: CD-Rom Published by National Cotton Council of America; 2002. January 8鈥?2
    35. Guo Y, Sukumar S, Yu JZ, Jenkins JN, Kohel RJ, Scheffler BE, Stelly DM: BAC-derived SSR markers chromosome locations in cotton. / Euphytica 2008, 161:361鈥?70. CrossRef
    36. Mun JH, Kim DJ, Choi HK, Gish J, Debelle F, Mudge J, Denny R, Endre G, Saurat O, Dudez AM, Kiss GB, Roe B, Young ND, Cook DR: Distribution of microsatellites in the genome of Medicago truncatula : a resource of genetic markers that integrate genetic and physical maps. / Genetics 2006, 172:2541鈥?555. CrossRef
    37. Bohra A, Dubey A, Saxena RK, Penmetsa RV, Poornima KN, Kumar N, Framer AD, Srivani G, Upadhyaya HD, Gothalwal R, Ramesh S, Singh D, Saxena K, Kavikishor PB, Singh NK, Town CD, May GD, Cook DR, Varshney RK: Analysis of BAC-end sequences (BESs) and development of BES-SSR markers for genetic mapping and hybrid purity assessment in pigeonpea ( Cajanus spp.). / BMC Plant Biol 2011, 11:56. CrossRef
    38. Guimar茫es PM, Garsmeur O, Proite K, Leal-Bertioli SCM, Seijo G, Chaine C, Bertioli DJ, D'Hont A: BAC libraries construction from the ancestral diploid genomes of the allotetraploid cultivated peanut. / BMC Plant Biol 2008, 8:14. CrossRef
    39. Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P, Das U, Daugherty L, Duquenne L, Finn RD, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Laugraud A, Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, Mistry J, Mitchell A, Mulder N, Natale D, Orengo C, Quinn AF, Delengut JD, Sigrist CJA, Thimma M, Thomas PD, Valentin F, Wilson D, Wu CH, Yeats C: InterPro: the integrative protein signature database. / Nucl Acids Res 2009,37(Suppl 1):D211-D215. CrossRef
    40. Guo BZ, Chen XP, Hong YB, Liang XQ, Dang P, Brenneman T, Holbrook C, Culbreath A: Analysis of gene expression profiles in leaf tissues of cultivated peanuts and development of EST-SSR markers and gene discovery. / Intl J Plant Genomics 2009. doi:10.1155/2009/715605
    41. Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S: Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon association, and genetic marker potential. / Genome Res 2001, 11:1441鈥?452. CrossRef
    42. Shoemaker RC, Grant D, Olson T, Warren WC, Wing R, / et al.: Microsatellite discovery from BAC end sequences and genetic mapping to anchor the soybean physical and genetic maps. / Genome 2008, 51:294鈥?02. CrossRef
    43. Ohyama A, Asamizu E, Negoro S, Miyatake K, Yamaguchi H, Tabata S, Fukuoka H: Characterization of tomato SSR markers developed using BAC-end and cDNA sequences from genome databases. / Mol Breeding 2009, 23:685鈥?91. CrossRef
    44. McNeil MD, Kota R, Paux E, Dunn D, McLean R, Feuillet C, Li D, Kong X, Lagudah E, Zhang JC, Jia JZ, Spielmeyer W, Bellgard M, Appels R: BAC-derived markers for assaying the stem rust resistance gene, Sr 2, in wheat breeding programs. / Mol Breeding 2008, 22:15鈥?4. CrossRef
    45. David P, Sevignac M, Thareau V, Catillon Y, Kami J, Gepts P, Langin T, Geffroy V: BAC end sequences corresponding to the B4 resistance gene cluster in common bean: a resource for markers and synteny analyses. / Mol Genet Genomics 2008, 280:521鈥?33. CrossRef
    46. Burstin J, Deniot G, Potier J, Weinachter C, Aubert G, Baranger A: Microsatellite polymorphism in Pisum sativum . / Plant Breeding 2001, 120:311鈥?17. CrossRef
    47. Hong CP, Piao ZY, Kang TW, Batley J, Yang TJ, Hur YK, Bhak J, Park BS, Edwards D, Lim YP: Genomic distribution of simple sequence repeats in Brassica rapa . / Mol Cells 2007,23(3):349鈥?56.
    48. Halward TM, Stalker HT, Kochert G: Development of an RFLP linkage map in diploid peanut species. / Theor Appl Genet 1993, 87:379鈥?84. CrossRef
    49. Burow MD, Simpson CE, Starr JL, Paterson AH: Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut ( Arachis hypogaea L.) broadening the gene pool of a monophyletic polyploidy species. / Genetics 2001, 159:823鈥?37.
    50. Hong YB, Chen XP, Liang XQ, Liu HY, Zhou GY, Li SX, Wen SJ, Holbrook CC, Guo BZ: A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L.) genome. / BMC Plant Biol 2010, 10:17. CrossRef
    51. Strachan T, Read AP: / Human Molecular Genetics II. 2nd edition. Oxford: BIOS Scientific Publishers Ltd; 1999.
    52. Luo MC, Thomas C, You FM, Hsiao J, Ouyang S, Buell CR, Malandro M, McGuire PE, Anderson OD, Dvorak J: High-throughput fingerprinting of bacterial artificial chromosomes using the SNaPshot labeling kit and sizing of restriction fragments by capillary electrophoresis. / Genomics 2003, 82:378鈥?89. CrossRef
    53. Varshney RK, Thiel T, Stein N, Langridge P, Graner A: In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species. / Cell Mol Biol Lett 2002, 7:537鈥?46.
    54. Thiel T, Michalek W, Varshney RK, Graner A: Exploiting EST databases for the development and characterization of gene derived SSR-markers in barley ( Hordeum vulgare L.). / Theor Appl Genet 2003, 106:411鈥?22.
    55. Rozen S, Skaletsky HJ: Primer3 on the WWW for general users and for biologist progrmmers. In / Bioinformatics Methods And Protocols: Methods in Molecular Biology. Edited by: Krawetz S, Misener S. Totowa: Humana Press; 2000:365鈥?86.
    56. Botstein D, White RL, Skolnick M, Davis RW: Construction of a genetic linkage map in man using restriction fragment length polymorphisms. / Am J Hum Genet 1980, 32:314鈥?31.
    57. Holbrook CC, Culbreath AK: Registration of 'Tifrunner' peanut. / J Plant Reg 2007, 1:124. CrossRef
    58. Liang X, Holbrook CC, Lynch RE, Guo BZ: Beta-1,3-glucanase activity in peanut seed ( Arachis hypogaea ) is induced by inoculation with Aspergillus flavus and copurifies with a conglutin-like protein. / Phytopathology 2005, 95:506鈥?11. CrossRef
    59. Murray MG, Thompson WF: Rapid isolation of high molecular weight plant DNA. / Nucleic Acids Res 1980, 8:4321鈥?325. CrossRef
    60. Hu Jinguo, Vick BA: Target region amplification polymorphism: A novel marker technique for plant genotyping. / Plant Mol Biol Reporter 2003, 21:289鈥?94. CrossRef
    61. Li G, Quiros CF: Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: Its application to mapping and gene tagging in Brassica . / Theor Appl Genet 2001, 103:455鈥?61. CrossRef
    62. Kosambi DD: The estimation of map distances from recombination values. / Ann Eugen 1944, 12:172鈥?75. CrossRef
  • 作者单位:Hui Wang (1) (4)
    R Varma Penmetsa (2)
    Mei Yuan (1)
    Limin Gong (3)
    Yongli Zhao (4)
    Baozhu Guo (5)
    Andrew D Farmer (6)
    Benjamin D Rosen (2)
    Jinliang Gao (2)
    Sachiko Isobe (7)
    David J Bertioli (8)
    Rajeev K Varshney (9)
    Douglas R Cook (2)
    Guohao He (3)

    1. Shandong Peanut Research Institute, Qingdao, China
    4. Fujian Agricultural and Forestry University, Fuzhou, China
    2. University of California, Davis, CA, 95616, USA
    3. Tuskegee University, Tuskegee, AL, 36088, USA
    5. USDA-ARS, Tifton, GA, 31793, USA
    6. National Center of Genome Resources (NCGR), Santa Fe, NM, 87505, USA
    7. Kazusa DNA Research Institute, Chiba, Japan
    8. University of Brasilia, Brasilia, Brazil
    9. Intenational Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
文摘
Background Cultivated peanut (Arachis hypogaea L.) is an important crop worldwide, valued for its edible oil and digestible protein. It has a very narrow genetic base that may well derive from a relatively recent single polyploidization event. Accordingly molecular markers have low levels of polymorphism and the number of polymorphic molecular markers available for cultivated peanut is still limiting. Results Here, we report a large set of BAC-end sequences (BES), use them for developing SSR (BES-SSR) markers, and apply them in genetic linkage mapping. The majority of BESs had no detectable homology to known genes (49.5%) followed by sequences with similarity to known genes (44.3%), and miscellaneous sequences (6.2%) such as transposable element, retroelement, and organelle sequences. A total of 1,424 SSRs were identified from 36,435 BESs. Among these identified SSRs, dinucleotide (47.4%) and trinucleotide (37.1%) SSRs were predominant. The new set of 1,152 SSRs as well as about 4,000 published or unpublished SSRs were screened against two parents of a mapping population, generating 385 polymorphic loci. A genetic linkage map was constructed, consisting of 318 loci onto 21 linkage groups and covering a total of 1,674.4 cM, with an average distance of 5.3 cM between adjacent loci. Two markers related to resistance gene homologs (RGH) were mapped to two different groups, thus anchoring 1 RGH-BAC contig and 1 singleton. Conclusions The SSRs mined from BESs will be of use in further molecular analysis of the peanut genome, providing a novel set of markers, genetically anchoring BAC clones, and incorporating gene sequences into a linkage map. This will aid in the identification of markers linked to genes of interest and map-based cloning.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700