用户名: 密码: 验证码:
Three-dimensional porous graphene sponges assembled with the combination of surfactant and freeze-drying
详细信息    查看全文
  • 作者:Rujing Zhang (1)
    Yachang Cao (1)
    Peixu Li (2)
    Xiaobei Zang (1)
    Pengzhan Sun (1)
    Kunlin Wang (1)
    Minlin Zhong (1)
    Jinquan Wei (1)
    Dehai Wu (2)
    Feiyu Kang (1) (3)
    Hongwei Zhu (1) (3) (4)
  • 关键词:graphene sponge ; hierarchical ; freezing media ; porous ; foams
  • 刊名:Nano Research
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:7
  • 期:10
  • 页码:1477-1487
  • 全文大小:3,512 KB
  • 参考文献:1. Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. / J. Am. Chem. Soc. 1958, / 80, 1339鈥?339. CrossRef
    2. Li, X. M.; Zhao, T. S.; Wang, K. L.; Yang, Y.; Wei, J. Q.; Kang, F. Y.; Wu, D. H.; Zhu, H. W. Directly drawing self-assembled, porous, and monolithic graphene fiber from chemical vapor deposition grown graphene film and its electrochemical properties. / Langmuir 2011, / 27, 12164鈥?2171. CrossRef
    3. Dong, Z. L.; Jiang, C. C.; Cheng, H. H.; Zhao, Y.; Shi, G. Q.; Jiang, L.; Qu, L. T. Facile fabrication of light, flexible and multifunctional graphene fibers. / Adv. Mater. 2012, / 24, 1856鈥?861. CrossRef
    4. Xu, Z.; Gao, C. Graphene chiral liquid crystals and macroscopic assembled fibres. / Nat. Commun. 2011, / 2, 571. CrossRef
    5. Hu, C. G.; Zhao, Y.; Cheng, H. H.; Wang, Y. H.; Dong, Z. L.; Jiang, C. C.; Zhai, X. Q.; Jiang, L.; Qu, L. T. Graphene microtubings: Controlled fabrication and site-specific functionalization. / Nano Lett. 2012, / 12, 5879鈥?884. CrossRef
    6. Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and characterization of graphene oxide paper. / Nature 2007, / 448, 457鈥?60. CrossRef
    7. Li, X.; Zhang, R. J.; Yu, W. J.; Wang, K. L.; Wei, J. Q.; Wu, D. H.; Cao, A. Y.; Li, Z. H.; Cheng, Y.; Zheng, Q. S. et al. Stretchable and highly sensitive graphene-on-polymer strain sensors. / Sci. Rep. 2012, / 2, 870.
    8. Hu, H.; Zhao, Z. B.; Zhang, R.; Bin, Y. Z.; Qiu, J. S. Polymer casting of ultralight graphene aerogels for the production of conductive nanocomposites with low filling content. / J. Mater. Chem. A 2014, / 2, 3756鈥?760. CrossRef
    9. Hu, H.; Zhao, Z. B.; Wan, W. B.; Gogotsi, Y.; Qiu, J. S. Ultralight and highly compressible graphene aerogels. / Adv. Mater. 2013, / 25, 2219鈥?223. CrossRef
    10. Zhao, Y.; Hu, C. G.; Hu, Y.; Cheng, H. H.; Shi, G. Q.; Qu, L. T. A versatile, ultralight, nitrogen-doped graphene framework. / Angew. Chem. Int. Ed. 2012, / 51, 11371鈥?1375. CrossRef
    11. Zhang, J.; Zhao, F.; Zhang, Z. P.; Chen, N.; Qu, L. T. Dimension-tailored functional graphene structures for energy conversion and storage. / Nanoscale 2013, / 5, 3112鈥?126. CrossRef
    12. Liang, H. W.; Guan, Q. F.; Chen, L. F.; Zhu, Z.; Zhang, W. J.; Yu, S. H. Macroscopic-scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications. / Angew. Chem. Int. Ed. 2012, / 51, 5101鈥?105. CrossRef
    13. Wu, Z. Y.; Li, C.; Liang, H. W.; Chen, J. F.; Yu, S. H. Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. / Angew. Chem. Int. Ed. 2013, / 52, 2925鈥?929. CrossRef
    14. Li, J. R.; Sculley, J.; Zhou, H. C. Metal-organic frameworks for separations. / Chem. Rev. 2012, / 112, 869鈥?32. CrossRef
    15. Ariga, K.; Vinu, A.; Yamauchi, Y.; Ji, Q. M.; Hill, J. P. Nanoarchitectonics for mesoporous materials. / Bull. Chem. Soc. Jpn. 2012, / 85, 1鈥?2. CrossRef
    16. Chen, Z. P.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Pei, S. F.; Cheng, H. M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. / Nat. Mater. 2011, / 10, 424鈥?28. CrossRef
    17. Vickery, J. L.; Patil, A. J.; Mann, S. Fabrication of graphene-polymer nanocomposites with higher-order three-dimensional architectures. / Adv. Mater. 2009, / 21, 2180鈥?184. CrossRef
    18. Estevez, L.; Kelarakis, A.; Gong, Q. M.; Da鈥檃s, E. H.; Giannelis, E. P. Multifunctional graphene/platinum/nafion hybrids via ice templating. / J. Am. Chem. Soc. 2011, / 133, 6122鈥?125. CrossRef
    19. Xiao, X. Y.; Beechem, T. E.; Brumbach, M. T.; Lambert, T. N.; Davis, D. J.; Michael, J. R.; Washburn, C. M.; Wang, J.; Brozik, S. M.; Wheeler, D. R. et al. Lithographically defined three-dimensional graphene structures. / ACS Nano 2012, / 6, 3573鈥?579. CrossRef
    20. Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. Self-assembled graphene hydrogel via a one-step hydrothermal process. / ACS Nano 2010, / 4, 4324鈥?330. CrossRef
    21. Jiang, X.; Ma, Y. W.; Li, J. J.; Fan, Q. L.; Huang, W. Self-assembly of reduced graphene oxide into three-dimensional architecture by divalent ion linkage. / J. Phys. Chem. C 2010, / 114, 22462鈥?2465. CrossRef
    22. Chen, W. F.; Yan, L. F. / In situ self-assembly of mild chemical reduction graphene for three-dimensional architecttures. / Nanoscale 2011, / 3, 3132鈥?137. CrossRef
    23. Cong, H. P.; Ren, X. C.; Wang, P.; Yu, S. H. Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. / ACS Nano 2012, / 6, 2693鈥?703. CrossRef
    24. Liu, F.; Seo, T. S. A controllable self-assembly method for large-scale synthesis of graphene sponges and free-standing graphene films. / Adv. Funct. Mater. 2010, / 20, 1930鈥?936. CrossRef
    25. Niu, Z. Q.; Chen, J.; Hng, H. H.; Ma, J.; Chen, X. D. A leavening strategy to prepare reduced graphene oxide foams. / Adv. Mater. 2012, / 24, 4144鈥?150. CrossRef
    26. Chen, Y. Q.; Chen, K. W.; Bai, H.; Li, L. Electrochemically reduced graphene porous material as light absorber for light-driven thermoelectric generator. / J. Mater. Chem. 2012, / 22, 17800鈥?7804. CrossRef
    27. Chen, K. W.; Chen, L. B.; Chen, Y. Q.; Bai, H.; Li, L. Three-dimensional porous graphene-based composite materials: Electrochemical synthesis and application. / J. Mater. Chem. 2012, / 22, 20968鈥?0976. CrossRef
    28. Sheng, K. X.; Sun, Y. S.; Li, C.; Yuan, W. J.; Shi, G. Q. Ultrahigh-rate supercapacitors based on electrochemically reduced graphene oxide for ac line-filtering. / Sci. Rep. 2012, / 2, 247. CrossRef
    29. Xie, X.; Zhou, Y. L.; Bi, H. C.; Yin, K. B.; Wan, S.; Sun, L. T. Large-range control of the microstructures and properties of three-dimensional porous graphene. / Sci. Rep. 2013, / 3, 2117.
    30. Sun, H. Y.; Xu, Z.; Gao, C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. / Adv. Mater. 2013, / 25, 2554鈥?560. CrossRef
    31. Parlett, C. M. A.; Wilson, K.; Lee, A. F. Hierarchical porous materials: Catalytic applications. / Chem. Soc. Rev. 2013, / 42, 3876鈥?893. CrossRef
    32. Taguchi, A.; Smatt, J. H.; Lind茅n, M. Carbon monoliths possessing a hierarchical, fully interconnected porosity. / Adv. Mater. 2003, / 15, 1209鈥?211. CrossRef
    33. Piat, R.; Schnack, E. Hierarchical material modeling of carbon/carbon composites. / Carbon 2003, / 41, 2121鈥?129. CrossRef
    34. Yin, S. Y.; Zhang, Y. Y.; Kong, J. H.; Zou, C. J.; Li, C. M.; Lu, X. H.; Ma, J.; Boey, F. Y. C.; Chen, X. D. Assembly of graphene sheets into hierarchical structures for high-performance energy storage. / ACS Nano 2011, / 5, 3831鈥?838. CrossRef
    35. Yang, S. Y.; Chang, K. H.; Tien, H. W.; Lee, Y. F.; Li, S. M.; Wang, Y. S.; Wang, J. Y.; Ma, C. C. M.; Hu, C. C. Design and tailoring of a hierarchical graphene-carbon nanotube architecture for supercapacitors. / J. Mater. Chem. 2011, / 21, 2374鈥?380. CrossRef
    36. Xiao, J.; Mei, D. H.; Li, X. L.; Xu, W.; Wang, D. Y.; Graff, G. L.; Bennett, W. D.; Nie, Z. M.; Saraf, L. V.; Aksay, I. A. et al. Hierarchically porous graphene as a lithium-air battery electrode. / Nano Lett. 2011, / 11, 5071鈥?078. CrossRef
    37. Li, X. Y.; Huang, X. L.; Liu, D. P.; Wang, X.; Song, S. Y.; Zhou, L.; Zhang, H. J. Synthesis of 3D hierarchical Fe3O4/graphene composites with high lithium storage capacity and for controlled drug delivery. / J. Phys. Chem. C 2011, / 115, 21567鈥?1573. CrossRef
    38. Wu, C.; Huang, X. Y.; Wu, X. F.; Qian, R.; Jiang, P. K. Mechanically flexible and multifunctional polymer-based graphene foams for elastic conductors and oil-water separators. / Adv. Mater. 2013, / 25, 5658鈥?662. CrossRef
    39. Bi, H. C.; Xie, X.; Yin, K. B.; Zhou, Y. L.; Wan, S.; He, L. B.; Xu, F.; Banhart, F.; Sun, L. T.; Ruoff, R. S. Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. / Adv. Funct. Mater. 2012, / 22, 4421鈥?425. CrossRef
    40. Yao, X.; Yao, H. W.; Li, Y. T. Hierarchically aligned porous scaffold by ice-segregation-induced self-assembly and thermally triggered electrostatic self-assembly of oppositely charged thermosensitive microgels. / J. Mater. Chem. 2009, / 19, 6516鈥?520. CrossRef
    41. Saye, R. I.; Sethian, J. A. Multiscale modeling of membrane rearrangement, drainage, and rupture in evolving foams. / Science 2013, / 340, 720鈥?24. CrossRef
    42. Bi, H. C.; Xie, X.; Yin, K. B.; Zhou, Y. L.; Wan, S.; Ruoff, R. S.; Sun, L. T. Highly enhanced performance of spongy graphene as an oil sorbent. / J. Mater. Chem. A 2014, / 2, 1652鈥?656. CrossRef
    43. Zhao, J. P.; Ren, W. C.; Cheng, H. M. Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations. / J. Mater. Chem. 2012, / 22, 20197鈥?0202. CrossRef
    44. Gui, X. C.; Wei, J. Q.; Wang, K. L.; Cao, A. Y.; Zhu, H. W.; Jia, Y.; Shu, Q. K.; Wu, D. H. Carbon nanotube sponges. / Adv. Mater. 2010, / 22, 617鈥?21. CrossRef
  • 作者单位:Rujing Zhang (1)
    Yachang Cao (1)
    Peixu Li (2)
    Xiaobei Zang (1)
    Pengzhan Sun (1)
    Kunlin Wang (1)
    Minlin Zhong (1)
    Jinquan Wei (1)
    Dehai Wu (2)
    Feiyu Kang (1) (3)
    Hongwei Zhu (1) (3) (4)

    1. School of Materials Science and Engineering, State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Materials Processing Technology of MOE, Tsinghua University, Beijing, 100084, China
    2. Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
    3. Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
    4. Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, China
  • ISSN:1998-0000
文摘
With the combination of surfactant and freeze-drying, we have developed two kinds of graphene spongy structures. On the one hand, using foams of soap bubbles as templates, three-dimensional porous graphene sponges with rich hierarchical pores have been synthesized. Pores of the material contain three levels of length scales, including millimeter, micrometer and nanometer. The structure can be tuned by changing the freezing media, adjusting the stirring rate or adding functional additives. On the other hand, by direct freeze-drying of a graphene oxide/surfactant suspension, a porous framework with directionally aligned pores is prepared. The surfactant gives a better dispersion of graphene oxide sheets, resulting in a high specific surface area. Both of the obtained materials exhibit excellent absorption capacity and good compression performance, providing a broad range of possible applications, such as absorbents, storage media, and carriers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700