用户名: 密码: 验证码:
Laboratory calibration of star sensor with installation error using a nonlinear distortion model
详细信息    查看全文
  • 作者:Yunting Li (1)
    Jun Zhang (1)
    Wenwen Hu (1)
    Jinwen Tian (1)
  • 刊名:Applied Physics B: Lasers and Optics
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:115
  • 期:4
  • 页码:561-570
  • 全文大小:
  • 参考文献:1. C.C. Liebe, Star trackers for attitude determination. IEEE Aerosp. Electron. Syst. Mag. 10(6), 10-6 (1995) CrossRef
    2. L.J. Crassidis, Angular velocity determination directly from star tracker measurements. J. Guid. Control Dyn. 25(6), 1165-168 (2002) CrossRef
    3. C.C. Liebe, K. Gromov, D.M. Meller, Toward a stellar gyroscope for spacecraft attitude determination. J. Guid. Control Dyn. 27(1), 91-9 (2004) CrossRef
    4. M.R. Shortis, T.A. Clarke, T. Short, A comparison of some techniques for the subpixel location of discrete target images. In / Proceedings of the SPIE, vol. 2350, pp. 239-50, 1994
    5. G. Ju, Autonomous / Star Sensing, Pattern Identification, and Attitude Determination for Spacecraft: An Analytical and Experimental Study, Doctoral Dissertation, 2001
    6. J. Shen, G.J. Zhang, et al., Star sensor on-orbit calibration using extended Kalman filter. In / 3rd International Symposium on. IEEE, Systems and Control in Aeronautics and Astronautics (ISSCAA), 2010
    7. Y.H. Geng, S. Wang, B.L. Chen, Calibration for star tracker with lens distortion. In / International Conference on Mechatronics and Automation (ICMA) (Chengdu), pp. 681-86, 2012
    8. F. Xing, Y. Dong, Z. You, Laboratory calibration of star tracker with brightness independent star identification strategy. Opt. Eng. 45(6), 063604 1-63604 9 (2006) CrossRef
    9. A.S. Malak, / Toward Faster and More Accurate Star Sensors Using Recursive Centoiding and Star Identification, Doctoral Dissertation, 25-9, 2003
    10. T. Sun, F. Xing, Z. You, Optical system error analysis and calibration method of high-accuracy star trackers. Sensors 13(4), 4598-623 (2013) CrossRef
    11. H.B. Liu, X.J. Li, J.C. Tan et al., Novel approach for laboratory calibration of star tracker. Opt. Eng. 49(7), 073601-073601-9 (2010) CrossRef
    12. O. Faugeras, / Three-Dimensional Computer Vision: A Geometric Viewpoint (MIT Press, Cambridge, 1993)
    13. Q.Y. Fan, G.J. Zhang, X.G. Wei, Sun sensor calibration based on exact modeling with intrinsic and extrinsic parameters. J. Beijing Univ. Aeronaut. Astronaut. 37(10), 1293-297 (2011)
    14. Z.Y. Zhang, Flexible camera calibration by viewing a plane from unknown orientations. In / Proceedings of the 7th IEEE International Conference on Computer Vision (Kerkyra), vol. 1, pp. 666-73, 1999
    15. R. Hartley, Self-calibration from multiple views with a rotating camera. In / Proceedings of the 3rd European Conference on Computer Vision (Stockholm, Sweden), pp. 471-78, May 1994
    16. D.C. Brown, Close-range camera calibration. Photogramm. Eng. 37(8), 855-66 (1971)
    17. Y.I. Abdel-Aziz, H.M. Karara, Direct linear transformation into object space coordinates in close-range photogrammetry. In / Proceedings of the Symposium on Close- / Range Photogrammetry (Urbana, Illinois), pp. 1-8, 1971
    18. A. Bj?rck, Least squares methods. Handb. Numer. Anal. 1, 465-52 (1990)
    19. J. Weng, P. Cohen, M. Herniou, Camera calibration with distortion models and accuracy evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 14(10), 965-80 (1992) CrossRef
    20. R.Y. Tsai, A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE J. Rob. Autom. 3(4), 323-44 (1987) CrossRef
    21. G. Wei, S. Ma, Implicit and explicit camera calibration: theory and experiments. IEEE Trans. Pattern Anal. Mach. Intell. 16(5), 469-80 (1994) CrossRef
    22. T. Rahman, N. Krouglicof, An efficient camera calibration technique offering robustness and accuracy over a wide range of lens distortion. IEEE Trans. Image Process. 21(2), 626-37 (2012) CrossRef
    23. C. Ricolfe-Viala, A.J. Sanchez-Salmeron, A. Valera, Efficient lens distortion correction for decoupling in calibration of wide angle lens cameras.?IEEE Sens. J. 13(2), 854-63 (2013)
    24. J. Weng, P. Cohen, M. Hernious, Calibration of stereo cameras using a non-linear distortion model. In / Proceedings of the 10th International Conference on Pattern Recognition (Atlantic City, NJ), vol. 1, pp. 246-53, 1990
    25. J. More, The levenberg-marquardt algorithm, implementation and theory. In / Numerical Analysis, ed. by G.A. Watson. Lecture Notes in Mathematics 630 (Springer, Berlin, 1977)
    26. J. Heikkila, O. Silven, A four-step camera calibration procedure with implicit image correction. In / Proceedings of the Computer Society Conference on IEEE, Computer Vision and Pattern Recognition, pp. 1106-112, 1997
    27. W.M. Zhang, W.H. Deng, Design of two-axis calibration rotating platform for high precision star sensor. / Opto- / Electron. Eng. 107-10 (1999)
    28. S.G. Hao, Z.H. Hao, Star image simulation software of star-tracker. / Optic Precis. Eng. 208-12 (2000)
    29. E. Hecht, Fourier optics. In / Optics (Addison-Wesley Publishing, 1990) (Chapter 5)
    30. B.M. Quine, V. Tarasyuk, H. Mebrahtu et al., Determining star-image location: a new sub-pixel interpolation technique to process image centroids. Comput. Phys. Commun. 177(9), 700-06 (2007) CrossRef
    31. R.C. Stone, A comparison of digital centering algorithms. Astron. J. 97, 1227-237 (1989) CrossRef
    32. H. Dong, L. Wang, Non-iterative spot center location algorithm based on Gaussian for fish-eye imaging laser warning system. Optik-Int. J. Light Electron. Optics 123(23), 2148-153 (2012) CrossRef
    33. H. Zhang, J. Yuan, E. Liu et al., Simulation of attitude precision of star sensor. J. China Univ. Mining Technol. (Chinese Edition) 37(1), 112 (2008)
  • 作者单位:Yunting Li (1)
    Jun Zhang (1)
    Wenwen Hu (1)
    Jinwen Tian (1)

    1. Institute for Pattern Recognition and Artificial Intelligence, Huazhong University of Science and Technology (HUST), Wuhan, 430074, Hubei, People’s Republic of China
  • ISSN:1432-0649
文摘
The high-precise star sensor calibration method requires high-accurate turntable, collimator, star point plate or other high-precision devices that are very expensive. We present a simple and available method to calibrate the principal point, focal length, radial distortion, tangential distortion and installation error of star sensor in laboratory, and without having high accurate or expensive devices. The calibration model takes the ordinary camera calibration methods and installation error into account. The installation error is modeled by combination of three typical effects: the installation of pan-tilt-zoom (PTZ) initial status, PTZ and charge-coupled device, which result in six parameters. The proposed procedure consists of a closed-form solution, followed by a nonlinear refining based on maximum likelihood criterion. Our calibration method is validated through simulation and real data that shows the superiority with respect to the traditional methods and has the same level as the state-of-the-art methods. The accuracy of our calibration method is 0.015° in the root of mean square distances between testing points and projected ones.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700