用户名: 密码: 验证码:
Organometallic hybrid perovskites: structural, optical characteristic and application in Schottky diode
详细信息    查看全文
  • 作者:Liang Chen ; Jinxiang Deng ; Hongli Gao…
  • 刊名:Journal of Materials Science: Materials in Electronics
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:27
  • 期:5
  • 页码:4275-4280
  • 全文大小:997 KB
  • 参考文献:1.S.D. Stranks, G.E. Eperon, G. Grancini et al., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341–344 (2013)CrossRef
    2.G. Xing, N. Mathews, S. Sun et al., Long-range balanced electron and hole transport lengths in organic–inorganic CH3NH3PbI3. Science 342(6156), 344–347 (2013)CrossRef
    3.J. Huang, K. Jiang, X. Cui et al., Direct conversion of CH3NH3PbI3 from electrodeposited PbO for highly efficient planar perovskite solar cells. Sci. Rep. 5, 15889 (2015). doi:10.​1038/​srep15889 CrossRef
    4.H. Zhou, Q. Chen, G. Li et al., Interface engineering of highly efficient perovskite solar cells. Science 345(6196), 542–546 (2014)CrossRef
    5.D. Yang, R. Yang, J. Zhang et al., High efficiency flexible perovskite solar cells using superior low temperature TiO2. Energy Environ. Sci. 8(11), 3208–3214 (2015)CrossRef
    6.Best Research-Cell Efficiencies, NREL. www.​nrel.​gov/​ncpv/​images/​efficiency_​chart.​jpg . Accessed July 2015
    7.Z.K. Tan, R.S. Moghaddam, M.L. Lai et al., Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014)CrossRef
    8.Y. Ling, Z. Yuan, Y. Tian et al., Bright light emitting diodes based on organometal halide perovskite nanoplatelets. Adv. Mater. 28(2), 305–311 (2016)CrossRef
    9.C.R. Kagan, D.B. Mitzi, C.D. Dimitrakopoulos, Organic–inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286, 945–947 (1999)CrossRef
    10.J.H. Heo, S.H. Im, J.H. Noh et al., Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 7, 486–491 (2013)CrossRef
    11.W. Nie, H. Tsai, R. Asadpour et al., High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347(6221), 522–525 (2015)CrossRef
    12.D. Liu, T.L. Kelly, Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics 8(2), 133–138 (2014)CrossRef
    13.M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467), 395–398 (2013)CrossRef
    14.A.T. Barrows, A.J. Pearson, C.K. Kwak et al., Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy Environ. Sci. 7(9), 2944–2950 (2014)CrossRef
    15.B. Conings et al., Perovskite-based hybrid solar cells exceeding 10 % efficiency with high reproducibility using a thin film sandwich approach. Adv. Mater. 26, 2041–2046 (2014)CrossRef
    16.X.H. Zhu, B.J. Zhao, S.F. Zhu et al., Synthesis and characterization of PbI2 polycrystals. Cryst. Res. Technol. 41(3), 239–242 (2006)CrossRef
    17.A.A.M. Farag, S.M.S. Haggag, M.E. Mahmoud, Spectral–optical–electrical–thermal properties of deposited thin films of nano-sized calcium(II)-8-hydroxy-5,7-dinitroquinolate complex. Spectrochim. Acta A 82, 467 (2011)CrossRef
    18.A.A.M. Farag, I.S. Yahia, Structural, absorption and optical dispersion characteristics of rhodamine B thin films prepared by drop casting technique. Opt. Commun. 283, 4310 (2010)CrossRef
    19.M.M.E. Nahass, A.M. Farag et al., Dispersion studies and electronic transitions in nickel phthalocyanine thin films. Opt. Laser Technol. 37, 513–523 (2005)CrossRef
    20.S. Agilan, D. Mangalaraj, S.K. Narayandass et al., Structural and optical characterization of CuInSe2 films deposited by hot wall vacuum evaporation method. Vacuum 81, 813–818 (2007)CrossRef
    21.N. Tugluoglu, B. Barıs, H. Gurel et al., Investigation of optical band gap and device parameters of rubrene thin film prepared using spin coating technique. J. Alloys Compd. 582, 696–702 (2014)CrossRef
    22.G. Chen, X. Zhang, B. Wang et al., Optical absorption edge characteristics of cubic boron nitride thin films. Appl. Phys. Lett. 75(1), 10–12 (1999)CrossRef
    23.V.B. Shmagin, K.E. Kudryavtsev, D.V. Shengurov et al., Urbach absorption edge in epitaxial erbium-doped silicon. J. Appl. Phys. 117(5), 055303 (2015)CrossRef
    24.C. Arbizzani, M. Mastragostino, B. Scrosati, Handbook of Organic Conductive Molecules and Polymers, Volume 4: Conductive Polymers: Transport, Photophysics and Applications (1997), pp. 595–619
    25.J.A. Banday, F.A. Mir, M.A. Qurishi et al., Isolation, structural, spectral, and thermal studies of imperatorin micro-crystals from Prangos pabularia. J. Therm. Anal. Calorim. 112(3), 1165–1170 (2013)CrossRef
    26.S. De Wolf, J. Holovsky, S.J. Moon et al., Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5(6), 1035–1039 (2014)CrossRef
    27.E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts, 2nd edn. (Clarendon, Oxford, 1988)
    28.Ö. Güllü, A. Türüt, S. Asubay, Electrical characterization of organic-on-inorganic semiconductor Schottky structures. J. Phys. Condens. Matter 20(4), 045215 (2008)CrossRef
    29.A.R. Vearey-Roberts, D.A. Evans, Modification of GaAs Schottky diodes by thin organic interlayers. Appl. Phys. Lett. 86, 072105 (2005)CrossRef
    30.J.A. Banday, F.A. Mir, H.A. Kanth, G.M. Bhat, Structural and optical properties of Heraclenin; a bio-organic molecule from Prangos Pabularia. Opt. Int. J. Light Electron. Opt. 124(20), 4655–4658 (2013)CrossRef
    31.D. Ray, P.K. Bharadwaj, A coumarin-derived fluorescence probe selective for magnesium. Inorg. Chem. 47, 2252–2254 (2008)CrossRef
    32.F.A. Mir, S.U. Rehman, T.A. Mir et al., Structural, optical and transport properties of 4-hydroxy coumarin: an organic Schottky diode. Appl. Phys. A 116(3), 1017–1023 (2014)CrossRef
    33.Ö. Güllü, S. Asubay, Ş. Aydoğan et al., Electrical characterization of the Al/new fuchsin/n-Si organic-modified device. Phys. E 42(5), 1411–1416 (2010)CrossRef
    34.M.E. Aydın, A. Türüt, The electrical characteristics of Sn/methyl-red/p-type Si/Al contacts. Microelectron. Eng. 84(12), 2875–2882 (2007)CrossRef
    35.S.M. El-Sayed, H.M.A. Hamid, R.M. Radwan, Effect of electron beam irradiation on the conduction phenomena of unplasticized PVC/PVA copolymer. Radiat. Phys. Chem. 69(4), 339–345 (2004)CrossRef
    36.Z. Çaldıran, A.R. Deniz, Ş. Aydoğan et al., The barrier height enhancement of the Au/n-Si/Al Schottky barrier diode by electrochemically formed an organic Anthracene layer on n-Si. Superlattices Microstruct. 56, 45–54 (2013)CrossRef
  • 作者单位:Liang Chen (1)
    Jinxiang Deng (1)
    Hongli Gao (1)
    Qianqian Yang (1)
    Guisheng Wang (1)
    Le Kong (1)
    Min Cui (1)
    Zijia Zhang (1)

    1. College of Applied Sciences, Beijing University of Technology, Beijing, 100124, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Optical and Electronic Materials
    Characterization and Evaluation Materials
  • 出版者:Springer New York
  • ISSN:1573-482X
文摘
CH3NH3PbI3 thin film was deposited by a dual-source evaporation system under high vacuum (~10−4 Pa). The crystallographic phase of the thin film was determined by X-ray diffraction and its perovskite structure was confirmed. The crystal of annealed perovskite film was extremely smooth and significantly larger than that of as-deposited. The optical property of the thin film was investigated in the spectral range 300–1800 nm. By analyzing the absorption coefficient (α), the optical band gap (1.58 eV) and Urbach energy (0.082 eV) were revealed. The Al/CH3NH3PbI3/ITO Schottky diode was fabricated in order to explore the potential applications of CH3NH3PbI3. The basic device parameters, barrier height and ideality factor were determined by the current–voltage (I–V) measurement. It can be found that the charge transport was governed by space-charge-limited current mechanism by studying the forward bias characteristic.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700