用户名: 密码: 验证码:
Comparison of the convolution quadrature method and enhanced inverse FFT with application in elastodynamic boundary element method
详细信息    查看全文
  • 作者:Martin Schanz ; Wenjing Ye ; Jinyou Xiao
  • 关键词:Convolution quadrature method ; FFT exponential window ; Boundary element method
  • 刊名:Computational Mechanics
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:57
  • 期:4
  • 页码:523-536
  • 全文大小:1,316 KB
  • 参考文献:1.Aliabadi MH (2002) The boundary element method: applications in solids and structures, vol 2. Wiley, LondonMATH
    2.Banjai L, Sauter S (2008) Rapid solution of the wave equation in unbounded domains. SIAM J Numer Anal 47(1):227–249MathSciNet CrossRef MATH
    3.Banjai L, Messner M, Schanz M (2012) Runge–Kutta convolution quadrature for the boundary element method. Comput Methods Appl Mech Eng 245–246:90–101. doi:10.​1016/​j.​cma.​2012.​07.​007 MathSciNet CrossRef
    4.Cao Y, Rong J, Wen L, Xiao J (2015) A kernel-independent fast multipole BEM for large-scale elastodynamic analysis. Eng Comput 2015:2391–2418CrossRef
    5.Domínguez J (1993) Boundary elements in dynamics. Computational Mechanics Publication, SouthamptonMATH
    6.Duffy MG (1982) Quadrature over a pyramid or cube of integrands with a singularity at a vertex. SIAM J Numer Anal 19(6):1260–1262MathSciNet CrossRef MATH
    7.Durbin F (1974) Numerical inversion of Laplace transforms: an efficient improvement to Dubner and Abate’s method. Comput J 17(4):371–376MathSciNet CrossRef MATH
    8.García-Sánchez F, Zhang C, Sáez A (2008) 2-D ransient dynamic analysis of cracked piezoelectric solids by a time-domain BEM. Comput Methods Appl Mech Eng 197(33–40):3108–3121CrossRef MATH
    9.Gaul L, Schanz M (1999) A comparative study of three boundary element approaches to calculate the transient response of viscoelastic solids with unbounded domains. Comput Methods Appl Mech Eng 179(1–2):111–123. doi:10.​1016/​S0045-7825(99)00032-8 CrossRef MATH
    10.Graffi D (1954) Über den Reziprozitätssatz in der Dynamik elastischer Körper. Ing Arch 22:45–46MathSciNet CrossRef MATH
    11.Kausel E (2006) Fundamental solutions in elastodynamics. Cambridge University Press, New YorkCrossRef MATH
    12.Kausel E, Roësset J (1992) Frequency domain analysis of undamped systems. J Eng Mech ASCE 118(4):721–734. doi:10.​1061/​(ASCE)0733-9399(1992)118:​4(721) CrossRef
    13.Kielhorn L, Schanz M (2008) Convolution quadrature method based symmetric Galerkin boundary element method for 3-d elastodynamics. Int J Numer Methods Eng 76(11):1724–1746MathSciNet CrossRef MATH
    14.Lubich C (1988) Convolution quadrature and discretized operational calculus. I. Numer Math 52(2):129–145MathSciNet CrossRef MATH
    15.Lubich C (1988) Convolution quadrature and discretized operational calculus. II. Numer Math 52(4):413–425MathSciNet CrossRef MATH
    16.Mansur WJ (1983) A time-stepping technique to solve wave propagation problems using the boundary element method. PhD thesis, University of Southampton
    17.Messner M, Schanz M (2010) An accelerated symmetric time-domain boundary element formulation for elasticity. Eng Anal Bound Elem 34(11):944–955. doi:10.​1016/​j.​enganabound.​2010.​06.​007 MathSciNet CrossRef MATH
    18.Narayanan GV, Beskos DE (1982) Numerical operational methods for time-dependent linear problems. Int J Numer Methods Eng 18(12):1829–1854. doi:10.​1002/​nme.​1620181207 MathSciNet CrossRef MATH
    19.Schanz M (2001) Wave propagation in viscoelastic and poroelastic continua: a boundary element approach. Lecture notes in applied mechanics, vol 2. Springer, New York. doi:10.​1007/​978-3-540-44575-3
    20.Schanz M (2010) On a reformulated convolution quadrature based boundary element method. CMES Comput Model Eng Sci 58(2):109–128. doi:10.​3970/​cmes.​2010.​058.​109 MathSciNet MATH
    21.Schanz M, Antes H (1997) Application of ‘operational quadrature methods’ in time domain boundary element methods. Meccanica 32(3):179–186CrossRef MATH
    22.Wheeler LT, Sternberg E (1968) Some theorems in classical elastodynamics. Arch Ration Mech Anal 31:51–90MathSciNet MATH
    23.Xiao J, Ye W, Cai Y, Zhang J (2012) Precorrected FFT accelerated BEM for large-scale transient elastodynamic analysis using frequency-domain approach. Int J Numer Methods Eng 90(1):116–134. doi:10.​1002/​nme.​3316
    24.Xiao J, Ye W, Wen L (2013) Efficiency improvement of the frequency-domain BEM for rapid transient elastodynamic analysis. Comput Mech 52(4):903–912. doi:10.​1007/​s00466-013-0852-9 CrossRef MATH
    25.Ying L, Biros G, Zorin D (2004) A kernel-independent adaptive fast multipole algorithm in two and three dimensions. J Comput Phys 196(2):591–626. doi:10.​1016/​j.​jcp.​2003.​11.​021 MathSciNet CrossRef MATH
    26.Zhang C (2000) Transient elastodynamic antiplane crack analysis in anisotropic solids. Int J Solids Struct 37(42):6107–6130CrossRef MATH
  • 作者单位:Martin Schanz (1)
    Wenjing Ye (2)
    Jinyou Xiao (3)

    1. Institute of Applied Mechanics, Graz University of Technology, Graz, Austria
    2. Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong
    3. School of Astronautics, Northwestern Polytechnical University, Xi’an, China
  • 刊物类别:Engineering
  • 刊物主题:Theoretical and Applied Mechanics
    Numerical and Computational Methods in Engineering
    Computational Science and Engineering
    Mechanics, Fluids and Thermodynamics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0924
文摘
Transient problems can often be solved with transformation methods, where the inverse transformation is usually performed numerically. Here, the discrete Fourier transform in combination with the exponential window method is compared with the convolution quadrature method formulated as inverse transformation. Both are inverse Laplace transforms, which are formally identical but use different complex frequencies. A numerical study is performed, first with simple convolution integrals and, second, with a boundary element method (BEM) for elastodynamics. Essentially, when combined with the BEM, the discrete Fourier transform needs less frequency calculations, but finer mesh compared to the convolution quadrature method to obtain the same level of accuracy. If further fast methods like the fast multipole method are used to accelerate the boundary element method the convolution quadrature method is better, because the iterative solver needs much less iterations to converge. This is caused by the larger real part of the complex frequencies necessary for the calculation, which improves the conditions of system matrix.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700