用户名: 密码: 验证码:
Utilization of nano/micro-size iron recovered from the fine fraction of automobile shredder residue for phenol degradation in water
详细信息    查看全文
  • 作者:Jiwan Singh ; Yoon-Young Chang ; Jae-Kyu Yang…
  • 关键词:Automobile shredder residue (ASR) ; Fe ; Phenol ; Scanning electron microscopy (SEM) and ; Fourier transform infrared spectroscopy ; (FTIR) ; Mechanism
  • 刊名:Frontiers of Environmental Science & Engineering
  • 出版年:2016
  • 出版时间:August 2016
  • 年:2016
  • 卷:10
  • 期:4
  • 全文大小:1,088 KB
  • 参考文献:1.Joung H T, Seo Y C, Kim K H, Hong J H, Yoo T W. Distribution and characteristics of pyrolysis products from automobile shredder residue using an experimental semi-batch reactor. Korean Journal of Chemical Engineering, 2007, 24(6): 996–1002CrossRef
    2.Singh J, Lee B K. Pollution control and metal resource recovery for low grade automobile shredder residue: a mechanism, bioavailability and risk assessment. Waste Management (New York, N.Y.), 2015, 38: 271–283CrossRef
    3.Santini A, Morselli L, Passarini F, Vassura I, Di Carlo S, Bonino F. End-of-Life Vehicles management: Italian material and energy recovery efficiency. Waste Management (New York, N.Y.), 2011, 31(3): 489–494CrossRef
    4.Singh J, Lee B K. Reduction of environmental availability and ecological risk of heavy metals in automobile shredder residues. Ecological Engineering, 2015, 81: 76–81CrossRef
    5.Singh J, Lee B K. Hydrometallurgical recovery of heavy metals from low grade automobile shredder residue (ASR): an application of advanced Fenton process (AFP). Journal of Environmental Management, 2015, 161: 1–10CrossRef
    6.Singh J, Yang J K, Chang Y Y. Quantitative analysis and reduction of the eco-toxicity risk of heavy metals for the fine fraction of automobile shredder residue (ASR) using H2O2. Waste Management (New York, N.Y.), 2016, 48: 374–382CrossRef
    7.Singh J, Reddy K J, Chang Y Y, Kang S H, Yang J K. A novel reutilization method for automobile shredder residue as an adsorbent for the removal of methylene blue: mechanisms and heavy metal recovery using an ultrasonically assisted acid. Process Safety and Environmental Protection, 2016, 99: 88–97CrossRef
    8.Hasanoglu A. Removal of phenol from wastewaters using membrane contactors: comparative experimental analysis of emulsion pertraction. Desalination, 2013, 309: 171–180CrossRef
    9.Naeem K, Ouyang F. Influence of supports on photocatalytic degradation of phenol and 4-chlorophenol in aqueous suspensions of titanium dioxide. Journal of Environmental Sciences (China), 2013, 25(2): 399–404CrossRef
    10.Cheng Z, Fu F, Pang Y, Tang B, Lu J. Removal of phenol by acidwashed zero-valent aluminium in the presence of H2O2. Chemical Engineering Journal, 2015, 260: 284–290CrossRef
    11.Wu Y, Zhao C, Wang Q, Ding K. Integrated effects of selected ions on 2,4,6-trinitrotoluene-removal by O3/H2O2. Journal of Hazardous Materials, 2006, 132(2–3): 232–236CrossRef
    12.Sobana N, Swaminathan M. The effect of operational parameters on the photocatalytic degradation of acid red 18 by ZnO. Separation and Purification Technology, 2007, 56(1): 101–107CrossRef
    13.Khokhawala I M, Gogate P R. Degradation of phenol using a combination of ultrasonic and UV irradiations at pilot scale operation. Ultrasonics Sonochemistry, 2010, 17(5): 833–838CrossRef
    14.APHA. Standard Methods for the Examination of Water and Wastewater Procedures, APHA, AWWA and WPCF, 1989
    15.Babuponnusami A, Muthukumar K. Removal of phenol by heterogeneous photo electro Fenton-like process using nano-zero valent iron. Separation and Purification Technology, 2012, 98: 130–135CrossRef
    16.Kalavathy M H, Miranda L R. Comparison of copper adsorption from aqueous solution using modified and unmodified Hevea brasiliensis saw dust. Desalination, 2010, 255(1–3): 165–174CrossRef
    17.Singh J, Mishra N S, Uma Banerjee S, Sharma Y C. Comparative studies of physical characteristics of raw and modified sawdust for their use as adsorbents for removal of acid dye. BioResources, 2011, 6(3): 2732–2743
    18.Fang Z Q, Qiu X Q, Chen J H, Qiu X H. Degradation of metronidazole by nanoscale zero-valent metal prepared from steel pickling waste liquor. Applied Catalysis B: Environmental, 2010, 100(1–2): 221–228CrossRef
    19.Xu L, Wang J. A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol. Journal of Hazardous Materials, 2011, 186(1): 256–264CrossRef
    20.Yehia F Z, Eshaq G, Rabie A M, Mady A H, ElMetwally A E. Phenol degradation by advanced Fenton process in combination with ultrasonic irradiation. Egyptian Journal of Petroleum, 2015, 24(1): 13–18CrossRef
  • 作者单位:Jiwan Singh (1)
    Yoon-Young Chang (1)
    Jae-Kyu Yang (2)
    Seon-Hong Kang (1)
    Janardhan Reddy Koduru (3)

    1. Department of Environmental Engineering, Kwangwoon University, Seoul, 139-701, Republic of Korea
    2. Division of General Education, Kwangwoon University, Seoul, 139-701, Republic of Korea
    3. Graduate School of Environmental Studies, Kwangwoon University, Seoul, 139-701, Republic of Korea
  • 刊物主题:Environment, general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2095-221X
  • 卷排序:10
文摘

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700