用户名: 密码: 验证码:
Non-enzymatic sensing of glucose and hydrogen peroxide using a glassy carbon electrode modified with a nanocomposite consisting of nanoporous copper, carbon black and nafion
详细信息    查看全文
  • 作者:Ling Mei ; Pengcheng Zhang ; Jiyun Chen ; Dandan Chen ; Ying Quan ; Ning Gu…
  • 关键词:X ; ray diffraction ; Transmission electron microscopy ; High ; resolution scanning electron microscopy ; Dealloying ; Electrooxidation ; Cyclic voltammetry
  • 刊名:Microchimica Acta
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:183
  • 期:4
  • 页码:1359-1365
  • 全文大小:620 KB
  • 参考文献:1.Heller A, Feldman B (2008) Electrochemical glucose sensors and their applications in diabetes management. Chem Rev 108:2482–2505CrossRef
    2.Chen XM, Wu GH, Cai ZX, Oyama M, Chen X (2014) Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Microchim Acta 181:689–705CrossRef
    3.Zhao L, Wu GH, Cai ZX, Zhao TT, Yao QH, Chen X (2015) Ultrasensitive non-enzymatic glucose sensing at near-neutral pH values via anodic stripping voltammetry using a glassy carbon electrode modified with Pt3Pd nanoparticles and reduced graphene oxide. Microchim Acta 182:2055–2060CrossRef
    4.Mei H, Wu WQ, Yu BB, Li YB, Wu HM, Wang SG, Xia QH (2015) Non-enzymatic sensing of glucose at neutral pH values using a glassy carbon electrode modified with carbon supported Co@ Pt core-shell nanoparticles. Microchim Acta 182:2055–2060CrossRef
    5.Rui Q, Komori K, Tian Y, Liu HQ, Luo YP, Sakai Y (2010) Electrochemical biosensor for the detection of H2O2 from living cancer cells based on ZnO nanosheets. Anal Chim Acta 670:57–62CrossRef
    6.Zhai DY et al. (2013) Highly sensitive glucose sensor based on Pt nanoparticle/polyaniline hydrogel heterostructures. ACS Nano 4:3540–3546CrossRef
    7.Wang GF, He XP, Wang LL, Gu AX, Huang Y, Fang B, Geng BY, Zhang XJ (2013) Non-enzymatic electrochemical sensing of glucose. Microchim Acta 180:161–186CrossRef
    8.Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108:814–825CrossRef
    9.Guo C, Huo H, Han X, Xu C, Li H (2014) Ni/CdS bifunctional Ti@TiO2 core-shell nanowire electrode for high-performance nonenzymatic glucose sensing. Anal Chem 86:876–883CrossRef
    10.Chen XM, Tian XT, Zhao LM, Huang ZY (2014) Nonenzymatic sensing of glucose at neutral pH values using a glassy carbon electrode modified with graphene nanosheets and Pt-Pd bimetallic nanocubes. Microchim Acta 181:783–789CrossRef
    11.Wang J, Zhang WD (2011) Fabrication of CuO nanoplatelets for highly sensitive enzyme-free determination of glucose. Electrochim Acta 56:7510–7516CrossRef
    12.Zhuang ZJ, Su XD, Yuan HY, Sun Q, Xiao D, Choi MMF (2008) An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode. Analyst 133:126–132CrossRef
    13.Reitz E, Jia W, Gentile M, Wang Y, Lei Y (2008) CuO nanospheres based nonenzymatic glucose sensor. Electroanalysis 20:2482–2486CrossRef
    14.Sahay R, Sundaramurthy J, Kumar PS, Thavasi V, Mhaisalkar SG, Ramakrishna S (2012) Synthesis and characterization of CuO nanofibers, and investigation for its suitability as blocking layer in ZnO NPs based dye sensitized solar cell and as photocatalyst in organic dye degradation. J Solid State Chem 186:261–267CrossRef
    15.Zhang YC, Su L, Dan M (2012) Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires. Biosens Bioelectron 31:426–432CrossRef
    16.Liu GY, Zheng BZ, Jiang YS, Cai YQ (2012) Improvement of sensitive CuO NFs-ITO nonenzymatic glucose sensor based on in situ electrospun fiber. Talanta 101:24–31CrossRef
    17.Xu CX, Wang LQ, Wang RY, Wang K, Zhang Y, Tian F, Ding Y (2009) Nanotubular mesoporous bimetallic nanostructures with enhanced electrocatalytic performance. Adv Mater 21:2165–2169CrossRef
    18.Yu F, Ahl S, Caminade AM, Majoral JP, Knoll W, Erlebacher J (2006) Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes. Anal Chem 78:7346–7350CrossRef
    19.Huang JF, Sun IW (2005) Fabrication and surface functionalization of nanoporous gold by electrochemical alloying/dealloying of Au-Zn in an ionic liquid, and the self-assembly of L-Cysteine monolayers. Adv Funct Mater 15:989–994CrossRef
    20.Smith AJ, Tran T, Wainwright MS (1999) Kinetics and mechanism of the preparation of Raney® copper. J Appl Electrochem 29:1085–1094CrossRef
    21.Liu W, Zhang S, Li N, Zheng J, Xing Y (2012) Fabrication and dealloying behavior of monolithic nanoporous copper ribbons with bimodal channel size distributions. J Mater Sci Technol 8:693–699CrossRef
    22.Li M, Zhou YZ, Geng HR (2012) Fabrication of nanoporous copper ribbons by dealloying of Al-Cu alloys. J Porous Mater 19:791–796CrossRef
    23.Xu CX, Wang JP, Zhou JH (2013) Nanoporous PtNi alloy as an electrochemical sensor for ethanol and H2O2. Sensors Actuators B 182:408–415CrossRef
    24.Xu CX, Sun FL, Gao H, Wang JP (2013) Nanoporous platinum-cobalt alloy for electrochemical sensing for ethanol, hydrogen peroxide, and glucose. Anal Chim Acta 780:20–27CrossRef
    25.Wang JP, Gao H, Sun FL, Xu CX (2014) Nanoporous PtAu alloy as an electrochemical sensor for glucose and hydrogen peroxide. Sensors Actuators B 191:612–618CrossRef
    26.Bai YF, Xu TB, Luong JHT, Cui HF (2014) Direct electron transfer of glucose oxidase-boron doped diamond interface: A new solution for a classical problem. Anal Chem 86:4910–4918CrossRef
    27.Zhou J, Liao C, Zhang L, Wang Q, Tian Y (2014) Molecular hydrogel-stabilized enzyme with facilitated electron transfer for determination of H2O2 Released from live cells. Anal Chem 86:4395–4401CrossRef
    28.Male KB, Hrapovic S, Liu YL, Wang DS, Luong JHT (2004) Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes. Anal Chim Acta 516:35–41CrossRef
    29.Huang T, Lin K, Tung S, Cheng T, Chang I, Hsieh Y, Lee C, Chiu H (2009) Glucose sensing by electrochemically grown copper nanobelt electrode. J Electroanal Chem 636:123–127CrossRef
    30.Kang XH, Mai ZB, Zou XY, Cai PX, Mo JY (2007) A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode. Anal Biochem 363:43–150
    31.Liu MM, Liu R, Chen W (2013) Graphene wrapped Cu2O nanocubes: Non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Biosens Bioelectron 45:206–212CrossRef
    32.Guo SJ, Wen D, Dong SJ, Wang E (2009) Gold nanowire assembling architecture for H2O2 electrochemical sensor. Talanta 77:1510–1517CrossRef
    33.Zhang KY, Zhang N, Cai H, Wang C (2012) A novel non-enzyme hydrogen peroxide sensor based on an electrode modified with carbon nanotube-wired CuO nanoflowers. Microchim Acta 176:137–142CrossRef
    34.Gu AX, Wang GF, Zhang XJ, Fang B (2010) Synthesis of CuO nanoflower and its application as a H2O2 sensor. Bull Mater Sci 33:17–20CrossRef
    35.Vogel AI (1989) Textbook of Quantitative Chemical Analysis. Longman United Kingdom
  • 作者单位:Ling Mei (1) (2)
    Pengcheng Zhang (1)
    Jiyun Chen (1)
    Dandan Chen (1)
    Ying Quan (1)
    Ning Gu (2)
    Genhua Zhang (1)
    Rongjing Cui (1)

    1. School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu, 215500, China
    2. Department of Chemistry and materials, Hebei Normal University, Shijiazhuang, 050024, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Inorganic Chemistry
    Physical Chemistry
    Characterization and Evaluation Materials
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Wien
  • ISSN:1436-5073
文摘
Three-dimensional nanoporous copper (NPC) was fabricated by dealloying ribbons of an Al-Cu alloy. NPC possesses a clean metal surface and high electrical conductivity. Subsequently, a non-enzymatic electrochemical sensor was obtained by modifying a glassy carbon electrode with nanocomposites containing nanoporous copper and carbon black (NPC-CB) in a nafion matrix. The sensor, if operated at a working voltage of 0.6 V (vs. SCE) in 50 mM NaOH solution, has a linear analytical range that extends from 6.0 μM to 3.4 mM of glucose, and a 2.6 μM detection limit (at an S/N ratio of 3). It also shows good selectivity over ascorbic acid, uric acid, dopamine and carbohydrates (fructose, saccharose, and maltose). The sensor also has a rapid amperometric response to hydrogen peroxide which can be quantified with a 1.2 μM detection limit.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700