用户名: 密码: 验证码:
How to integrate remotely sensed data and biodiversity for ecosystem assessments at landscape scale
详细信息    查看全文
  • 作者:Petteri Vihervaara (1)
    Laura Mononen (1) (2)
    Ari-Pekka Auvinen (1)
    Raimo Virkkala (1)
    Yihe L眉 (3)
    Inka Pippuri (4)
    Petteri Packalen (4)
    Ruben Valbuena (4)
    Jari Valkama (5)

    1. Finnish Environment Institute (SYKE)
    ; Joensuu ; Oulu ; and Helsinki Offices ; P.O. Box 140 ; 00251 ; Helsinki ; Finland
    2. Department of Geographical and Historical Studies
    ; University of Eastern Finland (UEF) ; P.O. Box 111 ; 80101 ; Joensuu ; Finland
    3. State Key Laboratory of Urban and Regional Ecology
    ; Research Center for Eco-environmental Sciences (RCEES) ; Chinese Academy of Sciences ; P.O. Box 2871 ; Beijing ; 100085 ; China
    4. School of Forest Sciences
    ; University of Eastern Finland (UEF) ; P.O. Box 111 ; 80101 ; Joensuu ; Finland
    5. Finnish Museum of Natural History (FMNH)
    ; Zoological Museum ; Monitoring Centre ; University of Helsinki ; P.O. Box 17 ; 00014 ; Helsinki ; Finland
  • 关键词:Ecosystem service ; Habitat ; LiDAR ; Essential biodiversity variable ; Citizen science ; Forest
  • 刊名:Landscape Ecology
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:30
  • 期:3
  • 页码:501-516
  • 全文大小:1,869 KB
  • 参考文献:1. Arzel C, R枚nk盲 M, Tolvanen H, Aarras N, Kamppinen M, Vihervaara P (2015) Species diversity, abundance and brood numbers of breeding waterbirds in relation to habitat properties in an agricultural watershed. Ann Zool Fennici 52:00鈥?0
    2. Asner, GP, Mascaro, J, Muller-Landau, HC, Vieilledent, G, Vaudry, R, Rasamoelina, M, Hall, JS, Breugel, M (2012) A universal airborne LiDAR approach for tropical forest carbon mapping. Oecologia 168: pp. 1147-1160 CrossRef
    3. Auvinen AP, Kemppainen E, von Weissenberg M (ed.) (2010) Fourth national report on the implementation of the convention of biological diversity in Finland. The finnish environment 2|2010. Ministry of the Environment, Helsinki. p 192
    4. Axelsson, P (2000) DEM generation from laser scanning data using adaptive TIN models. Int Arch Photogramm Remote Sens 33: pp. 110-117
    5. Barbet-Massin, M, Thuiller, W, Jiguet, F (2012) The fate of European breeding birds under climate, land-use and dispersal scenarios. Glob Chang Biol 18: pp. 881-890 CrossRef
    6. Bradbury, RB, Hill, RA, Mason, DC, Hinsley, SA, Wilson, JD, Balzter, H, Anderson, GQA, Whittingham, MJ, Davenport, IJ, Bellamy, PE (2005) Modelling relationships between birds and vegetation structure using airborne LiDAR data: a review with case studies from agricultural and woodland environments. Ibis 147: pp. 443-452 CrossRef
    7. Brommer, JE, Lehikoinen, A, Valkama, J (2012) The breeding ranges of central European and Arctic bird species move poleward. PLoS One 7: pp. e43648 CrossRef
    8. Carignan, V, Villard, MA (2002) Selecting indicator species to monitor ecological integrity: a review. Environ Monit Assess 78: pp. 45-61 CrossRef
    9. City of Helsinki (2014) Helsinki Environmental Statistics. http://www.helsinginymparistotilasto.fi Accessed Apr 2014
    10. Clawges, R, Vierling, K, Vierling, L, Rowell, E (2008) The use of airborne lidar to assess avian species diversity, density, and occurrence in a pine/aspen forest. Remote Sens Environ 112: pp. 2064-2073 CrossRef
    11. Coops, NC, Duffe, J, Koot, C (2010) Assessing the utility of lidar remote sensing technology to identify mule deer winter habitat. Can J Remote Sens 36: pp. 81-88 CrossRef
    12. Coops, NC, Schaepman, ME, M眉cher, CA (2013) What multiscale environmental drivers can best be discriminated from a habitat index derived from a remotely sensed vegetation time series?. Landscape Ecol 28: pp. 1529-1543 CrossRef
    13. Damgaard, C, Weiner, J (2000) Describing inequality in plant size or fecundity. Ecology 81: pp. 1139-1142 CrossRef
    14. Dauber, J, Hirsch, M, Simmering, D, Waldhardt, R, Otte, A, Wolters, V (2003) Landscape structure as an indicator of biodiversity: matrix effects on species richness. Agric Ecosyst Environ 98: pp. 321-329 CrossRef
    15. DeLuca, WV, Studds, CE, Rockwood, LL, Marra, P (2004) Influence of land use on the integrity of marsh bird communities of Chesapeake Bay USA. Wetlands 24: pp. 837-847 CrossRef
    Assessing biodiversity in Europe鈥攖he 2010 report. EEA Report No 5/2010. European Environment Agency, Copenhagen
    16. Flaherty S (2012) Red squirrel habitat mapping using remote sensing. PhD thesis, University of Edinburgh. Available at http://hdl.handle.net/1842/7607
    17. Fowler, RJ, Little, JJ (1979) Automatic extraction of irregular network digital terrain models. Comput Graph 13: pp. 199-207 CrossRef
    18. Glasser, GJ (1962) Variance formulas for the mean difference and coefficient of concentration. J Am Stat Assoc 57: pp. 648-654 CrossRef
    19. Gottschalk, TK, Huettmann, F, Ehlers, M (2005) Thirty years of analysing and modelling avian habitat relationships using satellite imagery data: a review. Int J Remote Sens 26: pp. 2631-2656 CrossRef
    20. Gove, HJ (2004) Structural stocking guides: a new look at old friend. Can J For Res 34: pp. 1044-1056 CrossRef
    21. Graf, RF, Mathys, L, Bollmann, K (2009) Habitat assessment for forest dwelling species using LiDAR remote sensing: capercaillie in the Alps. Forest Ecol Manag 257: pp. 160-167 CrossRef
    22. Green, AJ, Elmberg, J (2014) Ecosystem services provided by waterbirds. Biol Rev 89: pp. 105-122 CrossRef
    23. Heikkinen, RK (1991) Multivariate analysis of esker vegetation in southern H盲me, S Finland. Ann Bot Fenn 28: pp. 201-224
    24. Heino, J (2010) Are indicator groups and cross-taxon congruence useful for predicting biodiversity in aquatic ecosystems?. Ecol Indic 10: pp. 112-117 CrossRef
    25. Hill, RA, Hinsley, SA, Gaveau, DLA, Bellamy, PE (2004) Cover: predicting habitat quality for Great Tits (Parus major) with airborne laser scanning data. Int J Remote Sens 25: pp. 4851-4855 CrossRef
    26. Hill, RA, Thomson, AG (2005) Mapping woodland species composition and structure using airborne spectral and LiDAR data. Int J Remote Sens 26: pp. 3763-3779 CrossRef
    27. Hinsley, SA, Hill, RA, Bellamy, PE, Harrison, NM, Speakman, JR, Wilson, AK, Ferns, PA (2008) Effects of structural and functional habitat gaps on breeding woodland birds: working harder for less. Landscape Ecol 23: pp. 615-626 CrossRef
    28. Holmberg M, Akuj盲rvi A, Anttila S, Arvola L, Bergstr枚m I, B枚ttcher K, Feng X, Forsius M, Huttunen I, Huttunen M, Laine Y, Lehtonen H, Liski J, Lu N, L眉 Y, Mononen L, Rankinen K, Repo A, Sepp盲nen V, Vanhala P, Vihervaara P (2015) Virtual research environment for ecosystem services鈥擡SLab pilot application to a boreal watershed in southern Finland. Landscape Ecol. doi:10.1007/s10980-014-0122-z
    29. J盲rvinen T (2010) Mets盲n laadun vaikutus boreaalisten lintulajien levinneisyyteen paikallisella ja maisematasolla. University of Oulu, Pro gradu, Oulu聽(In Finnish)
    30. Jeanneret, P, Sch眉pbach, B, Luka, H (2003) Quantifying the impact of landscape and habitat features on biodiversity in cultivated landscapes. Agric Ecosyst Environ 98: pp. 311-320 CrossRef
    31. Jones, TG, Arcese, P, Sharma, T, Coops, N (2013) Describing avifaunal richness with functional and structural bioindicators derived from advanced airborne remotely sensed data. Int J Remote Sens 34: pp. 2689-2713 CrossRef
    32. Jung, K, Kaiser, S, Boehm, S, Nieschhulze, J, Kalko, EKV (2012) Moving in three dimensions: effects of structural complexity on occurrence and activity of insectivorous bats in managed forest stands. J Appl Ecol 49: pp. 523-531 CrossRef
    33. Koskimies, P (1989) Birds as a tool in environmental monitoring. Ann Zool Fenn 26: pp. 153-166
    34. Laasasenaho, J (1982) Taper curve and volume functions for pine, spruce and birch. Comm Inst For Fenn 108: pp. 1-74
    35. Lone, K, Loe, LE, Gobakken, T, Linnel, JDC, Odden, J, Remmen, J, Mysterud, A (2014) Living and dying in a multi-predator landscape of fear: roe deer are squeezed by contrasting pattern of predation risk imposed by lynx and humans. Oikos.
    36. Luoto, M, Virkkala, R, Heikkinen, RK, Rainio, K (2004) Predictive modeling of bird species richness using remote sensing and topography data in boreal agricultural-forest mosaic. Ecol Appl 14: pp. 1946-1962 CrossRef
    37. Mace, GM, Norris, K, Fitter, AH (2012) Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol Evol 27: pp. 19-26 CrossRef
    38. Maes J, Braat L, Jax K, Hutchins M, Furman E, Termansen M, Bidoglio G (2011) A spatial assessment of ecosystem services in Europe: methods, case studies and policy analysis鈥擯hase 1 (PEER Report 3). Retrieved from http://www.peer.eu
    39. Maes, J, Egoh, B, Willemen, L, Liquete, C, Vihervaara, P, Sch盲gner, JP, Grizzetti, B, Drakou, EG, Notte, AL, Zulian, G, Bouraoui, F, Paracchini, M, Braat, L, Bidoglio, G (2012) Mapping ecosystem services for policy support and decision making in the European Union. Ecosyst Serv 1: pp. 31-39 CrossRef
    40. Maes, J, Paracchini, ML, Zulian, G, Dunbar, MB, Alkemade, R (2012) Synergies and trade-offs between ecosystem service supply, biodiversity, and habitat conservation status in Europe. Biol Conserv 155: pp. 1-12 CrossRef
    41. Magurran, A (2004) Measuring biological diversity. Blackwell Publishing, Oxford
    42. McDermid, GJ, Hall, RJ, Sanchez-Azofeifa, GA, Franklin, SE, Stenhouse, GB, Kobliuk, T, LeDrew, EF (2009) Remote sensing and forest inventory for wildlife habitat assessment. Forest Ecol Manag 257: pp. 2262-2269 CrossRef
    43. Melin, M, Packal茅n, P, Matala, J, Meht盲talo, L, Pusenius, J (2013) Assessing and modeling moose (Alces alces) habitats with airborne laser scanning data. Int J Appl Earth Obs 23: pp. 389-396 CrossRef
    44. Morelli, F, Jerzak, L, Tryjanowski, P (2014) Birds as useful indicators of high nature value (HNV) farmland in Central Italy. Ecol Indic 38: pp. 236-242 CrossRef
    45. M眉ller, J, Brandl, R (2009) Assessing biodiversity by remote sensing in mountainous terrain: the potential of LiDAR to predict forest beetle assemblages. J Appl Ecol 46: pp. 897-905 CrossRef
    46. N忙sset, E (2002) Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens Environ 80: pp. 88-99 CrossRef
    47. N忙sset, E, Gobakken, T, Holmgren, J, Hyypp盲, H, Hyypp盲, J, Maltamo, M (2004) Laser scanning of forest resources: the Nordic experience. Scand J Forest Res 19: pp. 482-499 CrossRef
    48. N盲slund M (1937) Skogsf枚rs枚ksanstaltens gallringsf枚rs枚k i tallskog. Meddelanden fr氓n Statens Skogsf枚rs枚ksanstalt 29:1鈥?69 (In Swedish)
    49. Newton, AC, Hill, RA, Echeverr铆a, C, Golicher, D, Benayas, JMR, Cayuela, L, Hinsley, SA (2009) Remote sensing and the future of landscape ecology. Prog Phys Geogr 33: pp. 528-546 CrossRef
    50. Normander, B, Levin, G, Auvinen, AP, Bratli, H, Stabbetorp, O, Hedblom, M, Glimsk盲r, A, Gudmundsson, GA (2012) Indicator framework for measuring quantity and quality of biodiversity鈥攅xemplified in the Nordic countries. Ecol Indic 13: pp. 104-116 CrossRef
    51. O鈥機onnell, TJ, Jackson, LE, Brooks, RP (2000) Bird guilds as indicators of ecological condition in the central Appalachians. Ecol Appl 10: pp. 1706-1721 CrossRef
    52. O鈥機onnell, TJ, Bishop, JA, Brooks, RP (2007) Sub-sampling data from the North American Breeding Bird Survey for application to the Bird Community Index, an indicator of ecological condition. Ecol Indic 7: pp. 679-691 CrossRef
    53. Packal茅n, P, Suvanto, A, Maltamo, M (2009) A two stage method to estimate species specific growing stock. Photogramm Eng Remote Sens 75: pp. 1451-1460 CrossRef
    54. Pakkala, T, Lind茅n, A, Tiainen, J, Tomppo, E, Kouki, J (2014) Indicators of forest biodiversity: which bird species predict high breeding bird assemblage diversity in boreal forests at multiple spatial scales?. Ann Zool Fenn 51: pp. 457 CrossRef
    55. Palminteri, S, Powell, GVN, Asner, GP, Peres, CA (2012) LiDAR measurements of canopy structure predict spatial distribution of a tropical mature forest primate. Remote Sens Environ 127: pp. 98-105 CrossRef
    56. Pereira, HM, Belnap, J, Brummit, N, Collen, B, Ding, H, Gonzales-Espinosa, M, Gregory, RD, Honrado, J, Jongman, RHG, Julliard, R, McRae, J, Proenca, V, Rodrigues, P, Opige, M, Rodriguez, JP, Schmeller, DS, Swaay, C, Vieira, C (2010) Global biodiversity monitoring. Front Ecol Environ 9: pp. 458-460
    57. Pereira HM, Ferrier S, Walters M, Geller GN, Jongman RHG, Scholes RJ,聽Bruford MW,聽Brummitt N,聽Butchart SHM,聽Cardoso AC, Coops NC,聽Dulloo E, Faith DP,聽Freyhof J,聽Gregory RD,聽Heip C,聽H枚ft R,聽Hurtt G, Jetz W,聽Karp DS, McGeoch MA, Obura D, Onoda Y,聽Pettorelli N, Reyers B,聽Sayre R, Scharlemann JPW,聽Stuart SN,聽Turak E,聽Walpole M,聽Wegmann M (2013) Essential biodiversity variables. Science 339:277鈥?78
    58. Pesonen, A, Maltamo, M, Eerik盲inen, K, Packal茅n, P (2008) Airborne laser scanning-based prediction of coarse woody debris volumes in a conservation area. Forest Ecol Manag 255: pp. 3288-3296 CrossRef
    59. Pippuri, I, Kallio, E, Maltamo, M, Peltola, H, Packal茅n, P (2012) Exploring horizontal area-based metrics to discriminate the spatial pattern of trees and need for first thinning using airborne laser scanning. Forestry 85: pp. 305-314 CrossRef
    60. Pippuri, I, Maltamo, M, Packalen, P, M盲kitalo, J (2013) Predicting species-specific basal areas in urban forests using airborne laser scanning and existing stand register data. Eur J Forest Res 132: pp. 999-1012 CrossRef
    61. Ranta, P, Siitonen, M (1996) Plant life in Vantaa. Gummerus, Jyv盲skyl盲
    62. Repola J, Ojansuu R, Kukkola M (2007) Biomass functions for Scots pine, Norway spruce and birch in Finland. Metlan ty枚raportteja/Working Papers of the Finnish Forest Research Institute 53
    63. Roberge, JM, Angelstam, P, Villard, MA (2008) Specialised woodpeckers and naturalness in hemiboreal forests鈥攄eriving quantitative targets for conservation planning. Biol Conserv 141: pp. 997-1012 CrossRef
    64. Sadoti, G, Zuckerberg, B, Jarzyna, MA, Porter, WF (2013) Applying occupancy estimation and modelling to the analysis of atlas data. Divers Distrib 19: pp. 804-814 CrossRef
    65. Secretariat of the Convention on Biological Diversity (2010) Global biodiversity outlook 3. Montr茅al, 94 p. Available at http://www.cdb.int/gbo3/
    66. Simil盲, M, Kouki, J, M枚nkk枚nen, M, Sippola, AL, Huhta, E (2006) Co-variation and indicators of species diversity: can richness of forest-dwelling species be predicted in northern boreal forests?. Ecol Indic 6: pp. 686-700 CrossRef
    67. Sullivan BL, Aycrigg JL, Barry JH, Bonney RE, Bruns N, Cooper CB, Damoulas T, Dhondt AA, Dietterich T, Farnsworth A, Fink D, Fitzpatrick JW, Fredericks T, Gerbracht J, Gomes C, Hochachka WM, Iliff MJ, Lagoze C, La Sorte FA, Merrifield M, Morris W, Phillips TB, Reynolds M, Rodewald AD, Rosenberg KV, Trautmann NM, Wiggins A, Winkler DW, Wong W-K, Wood CL (2014) The eBird enterprise: an integrated approach to development and application of citizen science. Biol Conserv 169:31鈥?0
    68. Tattoni, C, Rizzolli, F, Pedrini, P (2012) Can LiDAR data improve bird habitat suitability models?. Ecol Model 245: pp. 103-110 CrossRef
    69. Thomas, CD, Anderson, BJ, Moilanen, A, Eigenbrod, F, Heinemeyer, A, Quaife, T, Roy, DB, Gillings, S, Armsworth, PR, Gaston, KJ (2013) Reconciling biodiversity and carbon conservation. Ecol Lett 16: pp. 39-47 CrossRef
    70. Tulloch, AIT, Possingham, HP, Joseph, LN, Szabo, J, Martin, TG (2013) Realising the full potential of citizen science monitoring programs. Biol Conserv 165: pp. 128-138 CrossRef
    71. Tynj盲l盲 M (ed) (2004) Oulun pesim盲linnusto. Oulun kaupunkilintuatlaksen 1997鈥?999 tulokset [Breeding birds of Oulu. The results of the city bird atlas 1997鈥?999]. Oulun kaupungin ymp盲rist枚viraston julkaisu 2/2004. Oulun kaupunki, Pohjois-Pohjanmaan lintutieteellinen yhdistys & Pohjois-Pohjanmaan ymp盲rist枚keskus
    72. V盲is盲nen, RA, Lammi, E, Koskimies, P (1998) Distribution, numbers and population changes of Finnish breeding birds (In Finnish with an English summary). Otava, Helsinki
    73. Valbuena, R, Packalen, P, Meht盲talo, L, Garcia-Abril, A, Maltamo, M (2013) Characterizing forest structural types and shelterwood dynamics from Lorenz-based indicators predicted by ALS. Can J Forest Res 43: pp. 1063-1074 CrossRef
    74. Valbuena, R, Maltamo, M, Martin-Fernandez, S, Packalen, P, Pascual, C, Nabuurs, GJ (2013) Patterns of covariance between Airborne Laser Scanning metrics and Lorenz curve descriptors of tree size inequality. Can J Remote Sens 39: pp. 18-31 CrossRef
    75. Valbuena, R, Vauhkonen, J, Packalen, P, Pitk盲nen, J, Maltamo, M (2014) Comparison of airborne laser scanning methods for estimating forest structure indicators based on Lorenz curves. ISPRS J Photogramm Remote Sens 95: pp. 23-33 CrossRef
    76. Valkama, J, Veps盲l盲inen, V, Lehikoinen, A (2011) The third finnish breeding bird atlas. Finnish Museum of Natural History and Ministry of Environment, Helsinki
    77. Vehmas, M, Peuhkurinen, J, Eerik盲inen, K, Packal茅n, P, Maltamo, M (2009) Identification of boreal forest stands with high herbaceous plant diversity using airborne laser scanning. Forest Ecol Manag 257: pp. 46-53 CrossRef
    78. Vierling, KT, B盲ssler, C, Brandl, R, Vierling, LA, Weiss, I, M眉ller, J (2011) Spinning a laser web: predicting spider distributions using LiDAR. Ecol Appl 21: pp. 577-588 CrossRef
    79. Vihervaara, P, Kumpula, T, Tanskanen, A, Burkhard, B (2010) Ecosystem services鈥揂 tool for sustainable management of human鈥揺nvironment systems. Case study finnish forest Lapland. Ecol Complex 7: pp. 410-420 CrossRef
    80. Vihervaara, P, Kumpula, T, Ruokolainen, A, Tanskanen, A, Burkhard, B (2012) The use of detailed biotope data for linking biodiversity with ecosystem services in Finland. Int J Biodivers Sci Ecosys Serv Manag 8: pp. 169-185 CrossRef
    81. Virkkala, R, Lehikoinen, A (2014) Patterns of climate-induced density shifts of species: poleward shifts faster in northern boreal birds than in southern birds. Glob Chang Biol 20: pp. 2995-3003 CrossRef
    82. Virkkala, R, Rajas盲rkk盲, A (2006) Spatial variation of bird species in landscapes dominated by old-growth forests in northern boreal Finland. Biodivers Conserv 15: pp. 2143-2162 CrossRef
    83. Virkkala, R, Rajas盲rkk盲, A, V盲is盲nen, RA, Vickholm, M, Virolainen, E (1994) The significance of protected areas for the land birds of southern Finland. Conserv Biol 8: pp. 532-544 CrossRef
    84. Virkkala, R, Heikkinen, RK, Fronzek, S, Kujala, H, Leikola, N (2013) Does the protected area network preserve bird species of conservation concern in a rapidly changing climate?. Biodivers Conserv 22: pp. 459-482 CrossRef
    85. Virkkala, R, Heikkinen, RK, Lehikoinen, A, Valkama, J (2014) Matching trends between recent distributional changes of northern-boreal birds and species-climate model predictions. Biol Conserv 172: pp. 124-127 CrossRef
    86. Winter S, McRoberts RE, Bertini R, Bastrup-Birk A, Sanchez C, Chirici G (2011) Essential features of forest biodiversity for assessment purposes. In: Chirici G, Winter S, McRoberts RE (eds) National forest inventories: contributions to forest biodiversity assessments, managing forest ecosystems 20. Springer Science+Business Media B.V, Dordrecht, pp 25鈥?9
    87. Zellweger, F, Braunisch, V, Baltensweiler, A, Bollmann, K (2013) Remotely sensed forest structural complexity predicts multi-species occurrence at the landscape scale. Forest Ecol Manag 307: pp. 303-312 CrossRef
    88. Zellweger, F, Morsdorf, F, Purves, RS, Braunisch, V, Bollmann, K (2014) Improved methods for measuring forest landscape structure: LiDAR complements field-based habitat assessment. Biodivers Conserv 23: pp. 289-307 CrossRef
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Landscape Ecology
    Plant Ecology
    Forestry Management
    Forestry
    Ecology
    Plant Sciences
  • 出版者:Springer Netherlands
  • ISSN:1572-9761
文摘
Context Biodiversity and ecosystem functioning underpins the delivery of all ecosystem services and should be accounted for in all decision-making related to the use of natural resources and areas. However, biodiversity and ecosystem services are often inadequately accounted for in land use management decisions. Objective We studied a boreal forest ecosystem by linking citizen-science bird data with detailed information on forest characteristics from airborne laser scanning (ALS). In this paper, we describe this method, and evaluate how similar kinds of biological data sets combined with remote sensing can be used for ecosystem assessments at landscape scale. Methods We analysed data for 41 boreal forest bird species and for 14 structural ALS-based forest parameters. Results The results support the use of the selected method as a basis for quantifying spatially-explicit biodiversity indicators for ecosystem assessments, while suggestions for improvements are also reported. Finally, we evaluate the capacity of those indicators to describe biodiversity-ecosystem service relationships, for example with carbon trade-offs. The results showed clear distinctions between the different species as measured, for example, by above-ground forest biomass at the observation sites. We also assess how the available data sources can be developed to be compatible with the concept of essential biodiversity variables (EBV), which has been put forward as a solution to cover the most important aspects of biodiversity and ecosystem functioning. Conclusions We suggest that EBVs should be integrated into environmental monitoring programmes in the future, and citizen science and remote sensing methods need to be an important part of them.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700