用户名: 密码: 验证码:
Comparative transcriptomics of the model mushroom Coprinopsis cinerea reveals tissue-specific armories and a conserved circuitry for sexual development
详细信息    查看全文
  • 作者:David Fernando Plaza (5)
    Chia-Wei Lin (5)
    Niels Sebastiaan Johannes van der Velden (5)
    Markus Aebi (5)
    Markus K眉nzler (5)

    5. Department of Biology
    ; Institute of Microbiology ; ETH Z眉rich ; Z眉rich ; Switzerland
  • 关键词:Fungal defense ; Sexual development ; C. cinerea ; Primordia ; RNA ; seq ; Comparative transcriptomics ; Tissue ; specific LC ; MS proteome
  • 刊名:BMC Genomics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:823 KB
  • 参考文献:1. Dacks, J, Roger, AJ (1999) The first sexual lineage and the relevance of facultative sex. J Mol Evol 48: pp. 779-783 CrossRef
    2. Heitman, J, Sun, S, James, TY (2013) Evolution of fungal sexual reproduction. Mycologia 105: pp. 1-27 CrossRef
    3. Crow, JF (1994) Advantages of sexual reproduction. Dev Genet 15: pp. 205-213 CrossRef
    4. Doll, K, Chatterjee, S, Scheu, S, Karlovsky, P, Rohlfs, M (2013) Fungal metabolic plasticity and sexual development mediate induced resistance to arthropod fungivory. Proc Biol Sci 280: pp. 20131219 CrossRef
    5. Kues, U, Liu, Y (2000) Fruiting body production in Basidiomycetes. Appl Microbiol Biotechnol 54: pp. 141-152 CrossRef
    6. Kues, U (2000) Life history and developmental processes in the basidiomycete Coprinus cinereus. Microbiol Mol Biol Rev 64: pp. 316-353 CrossRef
    7. Moore, D (2013) Coprinopsis: an autobiography. CreateSpace Independent Publishing Platform, Leipzig, Germany
    8. Costa, MC, Arroyo, LG, Allen-Vercoe, E, Stampfli, HR, Kim, PT, Sturgeon, A, Weese, JS (2012) Comparison of the fecal microbiota of healthy horses and horses with colitis by high throughput sequencing of the V3-V5 region of the 16S rRNA gene. PLoS One 7: pp. e41484 CrossRef
    9. Stajich, JE, Wilke, SK, Ahr茅n, D, Au, CH, Birren, BW, Borodovsky, M, Burns, C, Canb盲ck, B, Casselton, LA, Cheng, CK, Deng, J, Dietrich, FS, Fargo, DC, Farman, ML, Gathman, AC, Goldberg, J, Guig贸, R, Hoegger, PJ, Hooker, JB, Huggins, A, James, TY, Kamada, T, Kilaru, S, Kodira, C, K眉es, U, Kupfer, D, Kwan, HS, Lomsadze, A, Li, W, Lilly, WW (2010) Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus). Proc Natl Acad Sci U S A 107: pp. 11889-11894 CrossRef
    10. Liu, Y, Srivilai, P, Loos, S, Aebi, M, Kues, U (2006) An essential gene for fruiting body initiation in the basidiomycete Coprinopsis cinerea is homologous to bacterial cyclopropane fatty acid synthase genes. Genetics 172: pp. 873-884 CrossRef
    11. Arima, T, Yamamoto, M, Hirata, A, Kawano, S, Kamada, T (2004) The eln3 gene involved in fruiting body morphogenesis of Coprinus cinereus encodes a putative membrane protein with a general glycosyltransferase domain. Fungal Genet Biol 41: pp. 805-812 CrossRef
    12. Muraguchi, H, Fujita, T, Kishibe, Y, Konno, K, Ueda, N, Nakahori, K, Yanagi, SO, Kamada, T (2008) The exp1 gene essential for pileus expansion and autolysis of the inky cap mushroom Coprinopsis cinerea (Coprinus cinereus) encodes an HMG protein. Fungal Genet Biol 45: pp. 890-896 CrossRef
    13. Nakazawa, T, Ando, Y, Kitaaki, K, Nakahori, K, Kamada, T (2011) Efficient gene targeting in DeltaCc.ku70 or DeltaCc.lig4 mutants of the agaricomycete Coprinopsis cinerea. Fungal Genet Biol 48: pp. 939-946 CrossRef
    14. Nakazawa, T, Kondo, H, Nakahori, K, Kamada, T (2011) A mutation in the Cc.ubc2 gene affects clamp cell morphogenesis as well as nuclear migration for dikaryosis in Coprinopsis cinerea. Fungal Genet Biol 48: pp. 519-525 CrossRef
    15. Nakazawa, T, Tatsuta, Y, Fujita, T, Nakahori, K, Kamada, T (2010) Mutations in the Cc.rmt1 gene encoding a putative protein arginine methyltransferase alter developmental programs in the basidiomycete Coprinopsis cinerea. Curr Genet 56: pp. 361-367 CrossRef
    16. Kamada, T, Sano, H, Nakazawa, T, Nakahori, K (2010) Regulation of fruiting body photomorphogenesis in Coprinopsis cinerea. Fungal Genet Biol 47: pp. 917-921 CrossRef
    17. Ando, Y, Nakazawa, T, Oka, K, Nakahori, K, Kamada, T (2013) Cc.snf5, a gene encoding a putative component of the SWI/SNF chromatin remodeling complex, is essential for sexual development in the agaricomycete Coprinopsis cinerea. Fungal Genet Biol 50: pp. 82-89 CrossRef
    18. Bleuler-Mart铆nez, S, Butschi, A, Garbani, M, W盲lti, MA, Wohlschlager, T, Potthoff, E, Saboti膲, J, Pohleven, J, L眉thy, P, Hengartner, MO, Aebi, M, K眉nzler, M (2011) A lectin-mediated resistance of higher fungi against predators and parasites. Mol Ecol 20: pp. 3056-3070 CrossRef
    19. Bleuler-Martinez, S, Schmieder, S, Aebi, M, Kunzler, M (2012) Biotin-binding proteins in the defense of mushrooms against predators and parasites. Appl Environ Microbiol 78: pp. 8485-8487 CrossRef
    20. Sabotic, J, Bleuler-Martinez, S, Renko, M, Avanzo Caglic, P, Kallert, S, Strukelj, B, Turk, D, Aebi, M, Kos, J, Kunzler, M (2012) Structural basis of trypsin inhibition and entomotoxicity of cospin, serine protease inhibitor involved in defense of Coprinopsis cinerea fruiting bodies. J Biol Chem 287: pp. 3898-3907 CrossRef
    21. Olombrada, M, Martinez-Del-Pozo, A, Medina, P, Budia, F, Gavilanes, JG, Garcia-Ortega, L (2014) Fungal ribotoxins: natural protein-based weapons against insects. Toxicon 83C: pp. 69-74 CrossRef
    22. Luo, H, Hallen-Adams, HE, Scott-Craig, JS, Walton, JD (2012) Ribosomal biosynthesis of alpha-amanitin in Galerina marginata. Fungal Genet Biol 49: pp. 123-129 CrossRef
    23. Spiteller, P (2008) Chemical defence strategies of higher fungi. Chemistry 14: pp. 9100-9110 CrossRef
    24. Anke, H Insecticidal and Nematicidal Metabolites from Fungi. In: Esser, K eds. (2010) The Mycota: A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research/Industrial Applications. Springer, Heidelberg, pp. 123-163
    25. Rohlfs, M, Churchill, AC (2011) Fungal secondary metabolites as modulators of interactions with insects and other arthropods. Fungal Genet Biol 48: pp. 23-34 CrossRef
    26. Kaya, E, Karahan, S, Bayram, R, Yaykasli, KO, Colakoglu, S, Saritas, A (2013) Amatoxin and phallotoxin concentration in Amanita phalloides spores and tissues. Toxicol Ind Health.
    27. Cooper, DN, Boulianne, RP, Charlton, S, Farrell, EM, Sucher, A, Lu, BC (1997) Fungal galectins, sequence and specificity of two isolectins from Coprinus cinereus. J Biol Chem 272: pp. 1514-1521 CrossRef
    28. Erjavec, J, Kos, J, Ravnikar, M, Dreo, T, Sabotic, J (2012) Proteins of higher fungi鈥揻rom forest to application. Trends Biotechnol 30: pp. 259-273 CrossRef
    29. Wohlschlager, T, Butschi, A, Zurfluh, K, Vonesch, SC, auf dem Keller, U, Gehrig, P, Bleuler-Martinez, S, Hengartner, MO, Aebi, M, Kunzler, M (2011) Nematotoxicity of Marasmius oreades agglutinin (MOA) depends on glycolipid binding and cysteine protease activity. J Biol Chem 286: pp. 30337-30343 CrossRef
    30. Boer, W, Folman, LB, Summerbell, RC, Boddy, L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29: pp. 795-811 CrossRef
    31. Mygind, PH, Fischer, RL, Schnorr, KM, Hansen, MT, S枚nksen, CP, Ludvigsen, S, Ravent贸s, D, Buskov, S, Christensen, B, De Maria, L, Taboureau, O, Yaver, D, Elvig-J酶rgensen, SG, S酶rensen, MV, Christensen, BE, Kjaerulff, S, Frimodt-Moller, N, Lehrer, RI, Zasloff, M, Kristensen, HH (2005) Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 437: pp. 975-980 CrossRef
    32. Viegas, FB, Wattenberg, M, Feinberg, J (2009) Participatory visualization with Wordle. IEEE Trans Vis Comput Graph 15: pp. 1137-1144 CrossRef
    33. da Huang, W, Sherman, BT, Lempicki, RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4: pp. 44-57 CrossRef
    34. Schubert, M, Bleuler-Martinez, S, Butschi, A, W盲lti, MA, Egloff, P, Stutz, K, Yan, S, Collot, M, Mallet, JM, Wilson, IB, Hengartner, MO, Aebi, M, Allain, FH, K眉nzler, M (2012) Plasticity of the beta-trefoil protein fold in the recognition and control of invertebrate predators and parasites by a fungal defence system. PLoS Pathog 8: pp. e1002706 CrossRef
    35. Butschi, A, Titz, A, W盲lti, MA, Olieric, V, Paschinger, K, N枚bauer, K, Guo, X, Seeberger, PH, Wilson, IB, Aebi, M, Hengartner, MO, K眉nzler, M (2010) Caenorhabditis elegans N-glycan core beta-galactoside confers sensitivity towards nematotoxic fungal galectin CGL2. PLoS Pathog 6: pp. e1000717 CrossRef
    36. Chen, H, Kovalchuk, A, Kerio, S, Asiegbu, FO (2013) Distribution and bioinformatic analysis of the cerato-platanin protein family in Dikarya. Mycologia 105: pp. 1479-1488 CrossRef
    37. Gaderer, R, Bonazza, K, Seidl-Seiboth, V (2014) Cerato-platanins: a fungal protein family with intriguing properties and application potential. Appl Microbiol Biotechnol 98: pp. 4795-4803 CrossRef
    38. Petit, L, Maier, E, Gibert, M, Popoff, MR, Benz, R (2001) Clostridium perfringens epsilon toxin induces a rapid change of cell membrane permeability to ions and forms channels in artificial lipid bilayers. J Biol Chem 276: pp. 15736-15740 CrossRef
    39. Degiacomi, MT, Iacovache, I, Pernot, L, Chami, M, Kudryashev, M, Stahlberg, H, van der Goot, FG, Dal Peraro, M (2013) Molecular assembly of the aerolysin pore reveals a swirling membrane-insertion mechanism. Nat Chem Biol 9: pp. 623-629 CrossRef
    40. Kunzler, M, Bleuler-Martinez, S, Butschi, A, Garbani, M, Luthy, P, Hengartner, MO, Aebi, M (2010) Biotoxicity assays for fruiting body lectins and other cytoplasmic proteins. Methods Enzymol 480: pp. 141-150 CrossRef
    41. Bayram, O, Braus, GH (2012) Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol Rev 36: pp. 1-24 CrossRef
    42. Krijgsheld, P, Bleichrodt, R, van Veluw, GJ, Wang, F, Muller, WH, Dijksterhuis, J, Wosten, HA (2013) Development in Aspergillus. Stud Mycol 74: pp. 1-29 CrossRef
    43. Ohm, RA, de Jong, JF, Lugones, LG, Aerts, A, Kothe, E, Stajich, JE, de Vries, RP, Record, E, Levasseur, A, Baker, SE, Bartholomew, KA, Coutinho, PM, Erdmann, S, Fowler, TJ, Gathman, AC, Lombard, V, Henrissat, B, Knabe, N, K眉es, U, Lilly, WW, Lindquist, E, Lucas, S, Magnuson, JK, Piumi, F, Raudaskoski, M, Salamov, A, Schmutz, J, Schwarze, FW, vanKuyk, PA, Horton, JS (2010) Genome sequence of the model mushroom Schizophyllum commune. Nat Biotechnol 28: pp. 957-963 CrossRef
    44. Martin, F, Aerts, A, Ahr茅n, D, Brun, A, Danchin, EG, Duchaussoy, F, Gibon, J, Kohler, A, Lindquist, E, Pereda, V, Salamov, A, Shapiro, HJ, Wuyts, J, Blaudez, D, Bu茅e, M, Brokstein, P, Canb盲ck, B, Cohen, D, Courty, PE, Coutinho, PM, Delaruelle, C, Detter, JC, Deveau, A, DiFazio, S, Duplessis, S, Fraissinet-Tachet, L, Lucic, E, Frey-Klett, P, Fourrey, C, Feussner, I (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452: pp. 88-92 CrossRef
    45. Kwon, NJ, Garzia, A, Espeso, EA, Ugalde, U, Yu, JH (2010) FlbC is a putative nuclear C2H2 transcription factor regulating development in Aspergillus nidulans. Mol Microbiol 77: pp. 1203-1219 CrossRef
    46. Ohm, RA, Aerts, D, Wosten, HA, Lugones, LG (2013) The blue light receptor complex WC-1/2 of Schizophyllum commune is involved in mushroom formation and protection against phototoxicity. Environ Microbiol 15: pp. 943-955 CrossRef
    47. Ohm, RA, de Jong, JF, de Bekker, C, Wosten, HA, Lugones, LG (2011) Transcription factor genes of Schizophyllum commune involved in regulation of mushroom formation. Mol Microbiol 81: pp. 1433-1445 CrossRef
    48. Wang, M, Gu, B, Huang, J, Jiang, S, Chen, Y, Yin, Y, Pan, Y, Yu, G, Li, Y, Wong, BH, Liang, Y, Sun, H (2013) Transcriptome and proteome exploration to provide a resource for the study of Agrocybe aegerita. PLoS One 8: pp. e56686 CrossRef
    49. Yin, Y, Yu, G, Chen, Y, Jiang, S, Wang, M, Jin, Y, Lan, X, Liang, Y, Sun, H (2012) Genome-wide transcriptome and proteome analysis on different developmental stages of Cordyceps militaris. PLoS One 7: pp. e51853 CrossRef
    50. Yu, GJ, Wang, M, Huang, J, Yin, YL, Chen, YJ, Jiang, S, Jin, YX, Lan, XQ, Wong, BH, Liang, Y, Sun, H (2012) Deep insight into the Ganoderma lucidum by comprehensive analysis of its transcriptome. PLoS One 7: pp. e44031 CrossRef
    51. Borde, V, Robine, N, Lin, W, Bonfils, S, Geli, V, Nicolas, A (2009) Histone H3 lysine 4 trimethylation marks meiotic recombination initiation sites. EMBO J 28: pp. 99-111 CrossRef
    52. Boulianne, RP, Liu, Y, Aebi, M, Lu, BC, Kues, U (2000) Fruiting body development in Coprinus cinereus: regulated expression of two galectins secreted by a non-classical pathway. Microbiology 146: pp. 1841-1853
    53. Thanabalu, T, Porter, AG (1996) A Bacillus sphaericus gene encoding a novel type of mosquitocidal toxin of 31.8 kDa. Gene 170: pp. 85-89 CrossRef
    54. Ahmed, YL, Gerke, J, Park, HS, Bayram, 脰, Neumann, P, Ni, M, Dickmanns, A, Kim, SC, Yu, JH, Braus, GH, Ficner, R, Ahmed, YL, Gerke, J, Park, HS, Bayram, O, Neumann, P, Ni, M, Dickmanns, A, Kim, SC, Yu, JH, Braus, GH, Ficner, R (2013) The Velvet Family of Fungal Regulators Contains a DNA-Binding Domain Structurally Similar to NF-kappaB. PLoS Biol 11: pp. e1001750 CrossRef
    55. Vienken, K, Scherer, M, Fischer, R (2005) The Zn (II)2Cys6 putative Aspergillus nidulans transcription factor repressor of sexual development inhibits sexual development under low-carbon conditions and in submersed culture. Genetics 169: pp. 619-630 CrossRef
    56. Xu, F, Park, MR, Kitazumi, A, Herath, V, Mohanty, B, Yun, SJ, de los Reyes, BG (2012) Cis-regulatory signatures of orthologous stress-associated bZIP transcription factors from rice, sorghum and Arabidopsis based on phylogenetic footprints. BMC Genomics 13: pp. 497 CrossRef
    57. Traeger, S, Altegoer, F, Freitag, M, Gabaldon, T, Kempken, F, Kumar, A, Marcet-Houben, M, Poggeler, S, Stajich, JE, Nowrousian, M (2013) The Genome and Development-Dependent Transcriptomes of Pyronema confluens: A Window into Fungal Evolution. PLoS Genet 9: pp. e1003820 CrossRef
    58. Clark, NL, Aagaard, JE, Swanson, WJ (2006) Evolution of reproductive proteins from animals and plants. Reproduction 131: pp. 11-22 CrossRef
    59. Swanson, WJ, Vacquier, VD (2002) The rapid evolution of reproductive proteins. Nat Rev Genet 3: pp. 137-144 CrossRef
    60. Romero, IG, Ruvinsky, I, Gilad, Y (2012) Comparative studies of gene expression and the evolution of gene regulation. Nat Rev Genet 13: pp. 505-516 CrossRef
    61. Harigaya, Y, Tanaka, H, Yamanaka, S, Tanaka, K, Watanabe, Y, Tsutsumi, C, Chikashige, Y, Hiraoka, Y, Yamashita, A, Yamamoto, M (2006) Selective elimination of messenger RNA prevents an incidence of untimely meiosis. Nature 442: pp. 45-50 CrossRef
    62. Kaur, J, Sebastian, J, Siddiqi, I (2006) The Arabidopsis-mei2-like genes play a role in meiosis and vegetative growth in Arabidopsis. Plant Cell 18: pp. 545-559 CrossRef
    63. Merino, ST, Cummings, WJ, Acharya, SN, Zolan, ME (2000) Replication-dependent early meiotic requirement for Spo11 and Rad50. Proc Natl Acad Sci U S A 97: pp. 10477-10482 CrossRef
    64. Diz, AP, Martinez-Fernandez, M, Rolan-Alvarez, E (2012) Proteomics in evolutionary ecology: linking the genotype with the phenotype. Mol Ecol 21: pp. 1060-1080 CrossRef
    65. Walti, MA, Villalba, C, Buser, RM, Grunler, A, Aebi, M, Kunzler, M (2006) Targeted gene silencing in the model mushroom Coprinopsis cinerea (Coprinus cinereus) by expression of homologous hairpin RNAs. Eukaryot Cell 5: pp. 732-744 CrossRef
    66. Swamy, S, Uno, I, Ishikawa, T (1984) Morphogenic Effects of Mutations at the A and B Incompatibility Factors in Coprinus cinereus. J Gen Microbiol 130: pp. 6
    67. Ramakers, C, Ruijter, JM, Deprez, RH, Moorman, AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339: pp. 62-66 CrossRef
    68. Schefe, JH, Lehmann, KE, Buschmann, IR, Unger, T, Funke-Kaiser, H (2006) Quantitative real-time RT-PCR data analysis: current concepts and the novel 鈥済ene expression鈥檚 CT difference鈥?formula. J Mol Med (Berl) 84: pp. 901-910 CrossRef
    69. Aursnes, IA, Rishovd, AL, Karlsen, HE, Gjoen, T (2011) Validation of reference genes for quantitative RT-qPCR studies of gene expression in Atlantic cod (Gadus morhua l.) during temperature stress. BMC Res Notes 4: pp. 104 CrossRef
    70. de Oliveira, LA, Breton, MC, Bastolla, FM, Camargo Sda, S, Margis, R, Frazzon, J, Pasquali, G (2012) Reference genes for the normalization of gene expression in eucalyptus species. Plant Cell Physiol 53: pp. 405-422 CrossRef
    71. Ferreira, E, Cronje, MJ (2012) Selection of suitable reference genes for quantitative real-time PCR in apoptosis-induced MCF-7 breast cancer cells. Mol Biotechnol 50: pp. 121-128 CrossRef
    72. Huggett, J, Dheda, K, Bustin, S, Zumla, A (2005) Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 6: pp. 279-284 CrossRef
    73. Langnaese, K, John, R, Schweizer, H, Ebmeyer, U, Keilhoff, G (2008) Selection of reference genes for quantitative real-time PCR in a rat asphyxial cardiac arrest model. BMC Mol Biol 9: pp. 53 CrossRef
    74. Silveira, ED, Alves-Ferreira, M, Guimaraes, LA, da Silva, FR, Carneiro, VT (2009) Selection of reference genes for quantitative real-time PCR expression studies in the apomictic and sexual grass Brachiaria brizantha. BMC Plant Biol 9: pp. 84 CrossRef
    75. Wan, H, Yuan, W, Ruan, M, Ye, Q, Wang, R, Li, Z, Zhou, G, Yao, Z, Zhao, J, Liu, S, Yang, Y (2011) Identification of reference genes for reverse transcription quantitative real-time PCR normalization in pepper (Capsicum annuum L.). Biochem Biophys Res Commun 416: pp. 24-30 CrossRef
    76. Trapnell, C, Williams, BA, Pertea, G, Mortazavi, A, Kwan, G, van Baren, MJ, Salzberg, SL, Wold, BJ, Pachter, L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28: pp. 511-515 CrossRef
    77. Tarazona, S, Garcia-Alcalde, F, Dopazo, J, Ferrer, A, Conesa, A (2011) Differential expression in RNA-seq: a matter of depth. Genome Res 21: pp. 2213-2223 CrossRef
    78. Robinson, MD, McCarthy, DJ, Smyth, GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: pp. 139-140 CrossRef
    79. Altschul, SF, Madden, TL, Schaffer, AA, Zhang, J, Zhang, Z, Miller, W, Lipman, DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: pp. 3389-3402 CrossRef
    80. Petersen, TN, Brunak, S, von Heijne, G, Nielsen, H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8: pp. 785-786 CrossRef
    81. Sonnhammer, EL, von Heijne, G, Krogh, A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6: pp. 175-182
    82. Nguyen Ba, AN, Pogoutse, A, Provart, N, Moses, AM (2009) NLStradamus: a simple Hidden Markov Model for nuclear localization signal prediction. BMC Bioinformatics 10: pp. 202 CrossRef
    83. Eisen, MB, Spellman, PT, Brown, PO, Botstein, D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95: pp. 14863-14868 CrossRef
    84. Thompson, JD, Higgins, DG, Gibson, TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: pp. 4673-4680 CrossRef
    85. Letunic, I, Doerks, T, Bork, P (2012) SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40: pp. D302-D305 CrossRef
    86. Wisniewski, JR, Zougman, A, Nagaraj, N, Mann, M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6: pp. 359-362 CrossRef
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background It is well known that mushrooms produce defense proteins and secondary metabolites against predators and competitors; however, less is known about the correlation between the tissue-specific expression and the target organism (antagonist) specificity of these molecules. In addition, conserved transcriptional circuitries involved in developing sexual organs in fungi are not characterized, despite the growing number of gene expression datasets available from reproductive and vegetative tissue. The aims of this study were: first, to evaluate the tissue specificity of defense gene expression in the model mushroom Coprinopsis cinerea and, second, to assess the degree of conservation in transcriptional regulation during sexual development in basidiomycetes. Results In order to characterize the regulation in the expression of defense loci and the transcriptional circuitries controlling sexual reproduction in basidiomycetes, we sequenced the poly (A)-positive transcriptome of stage 1 primordia and vegetative mycelium of C. cinerea A43mutB43mut. Our data show that many genes encoding predicted and already characterized defense proteins are differentially expressed in these tissues. The predicted specificity of these proteins with regard to target organisms suggests that their expression pattern correlates with the type of antagonists these tissues are confronted with. Accordingly, we show that the stage 1 primordium-specific protein CC1G_11805 is toxic to insects and nematodes. Comparison of our data to analogous data from Laccaria bicolor and Schizophyllum commune revealed that the transcriptional regulation of nearly 70 loci is conserved and probably subjected to stabilizing selection. A Velvet domain-containing protein was found to be up-regulated in all three fungi, providing preliminary evidence of a possible role of the Velvet protein family in sexual development of basidiomycetes. The PBS-soluble proteome of C. cinerea primordia and mycelium was analyzed by shotgun LC-MS. This proteome data confirmed the presence of intracellular defense proteins in primordia. Conclusions This study shows that the exposure of different tissues in fungi to different types of antagonists shapes the expression pattern of defense loci in a tissue-specific manner. Furthermore, we identify a transcriptional circuitry conserved among basidiomycetes during fruiting body formation that involves, amongst other transcription factors, the up-regulation of a Velvet domain-containing protein.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700