用户名: 密码: 验证码:
Bacterial community structure and detection of putative plant growth-promoting rhizobacteria associated with plants grown in Chilean agro-ecosystems and undisturbed ecosystems
详细信息    查看全文
  • 作者:Milko A. Jorquera (1)
    Nitza G. Inostroza (1)
    Lorena M. Lagos (2)
    Patricio J. Barra (2)
    Luis G. Marileo (2)
    Joaquin I. Rilling (2)
    Daniela C. Campos (1)
    David E. Crowley (3)
    Alan E. Richardson (4)
    Mar铆a L. Mora (1)
  • 关键词:1 ; Aminocyclopropane ; 1 ; carboxylate deaminase ; Auxin ; Phytase ; Plant growth ; promoting rhizobacteria ; Rhizobacterial community
  • 刊名:Biology and Fertility of Soils
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:50
  • 期:7
  • 页码:1141-1153
  • 全文大小:1,321 KB
  • 参考文献:1. Acu帽a J, Jorquera M, Mart铆nez OA, Menezes-Blackburn D, Fern谩ndez MT, Marschner P, Greiner R, Mora ML (2011) Indole acetic acid and phytase activity produced by rhizosphere bacilli as affected by pH and metals. J Soil Sci Plant Nutr 11:1鈥?2
    2. Acu帽a JJ, Jorquera MA, Barra PJ, Crowley DE, Mora ML (2013) Selenobacteria selected from the rhizosphere as a potential tool for Se biofortification of wheat crops. Biol Fertil Soils 49:175鈥?85 CrossRef
    3. Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523鈥?543 CrossRef
    4. Bakken LR, Frosteg氓rd 脜 (2006) Nucleic acid extraction from soil. In: Smalla K, Nannipieri P (eds) Series on soil biology: nucleic acids and proteins in soil. Springer, Berlin, 50鈥?3 pp
    5. Bardhan S, Jose S, Jenkins MA, Webster CR, Udawatta RP, Stehn SE (2012) Microbial community diversity and composition across a gradient of soil acidity in spruce鈥揻ir forests of the southern Appalachian Mountains. Appl Soil Ecol 61:60鈥?8 CrossRef
    6. Bashan Y, Kamnev AA, de-Bashan LE (2013a) A proposal for isolating and testing phosphate-solubilizing bacteria that enhance plant growth. Biol Fertil Soils 49:1鈥? CrossRef
    7. Bashan Y, Kamnev AA, de-Bashan LE (2013b) Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: a proposal for an alternative procedure. Biol Fertil Soils 49:465鈥?79 CrossRef
    8. Bausenwein U, Gattinger A, Langer U, Embacher A, Hartmann HP, Sommer M, Munch JC, Schloter M (2008) Exploring soil microbial communities and soil organic matter: variability and interactions in arable soils under minimum tillage practice. Appl Soil Ecol 40:67鈥?7 CrossRef
    9. Berendsen RL, Pieterse CMJ, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478鈥?86 CrossRef
    10. Bertsch PM, Bloom PR (1996) Aluminum. In: Bigham JM (ed) Methods of soil analysis, part 3鈥攃hemical methods. Soil Science Society of America, Madison, 526-527 pp
    11. Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327鈥?350 CrossRef
    12. Bissett A, Richardson AE, Baker G, Wakelin S, Thrall PH (2010) Life history determines biogeographical patterns of soil microbial communities over multiple spatial scales. Mol Ecol 19:4315鈥?327 CrossRef
    13. Blaha D, Prigent-Combaret C, Mirza MS, Mo毛nne-Loccoz Y (2006) Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene / acdS in phytobeneficial and pathogenic / Proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol 56:455鈥?70 CrossRef
    14. Brice帽o G, Jorquera MA, Demanet R, Mora ML, Dur谩n N, Palma G (2010) Effect of cow slurry amendment on atrazine dissipation and bacterial community structure in an agricultural Andisol. Sci Total Environ 408:2833鈥?839 CrossRef
    15. Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807鈥?38 CrossRef
    16. Cea M, Jorquera M, Rubilar O, Langer H, Tortella G, Diez MC (2010) Bioremediation of soil contaminated with pentachlorophenol by / Anthracophyllum discolor and its effect on soil microbial community. J Hazard Mater 181:315鈥?23 CrossRef
    17. Cesco S, Mimmo T, Tonon G, Tomasi R, Pinton R, Terzano R, Neumann G, Weisskopf L, Renella G, Landi L, Nannipieri P (2012) Plant-borne flavonoids released into the rhizosphere: impact on soil bio-activities related to plant nutrition. A review. Biol Fertil Soils 48:123鈥?50 CrossRef
    18. Drees KP, Neilson JW, Betancourt JL, Quade J, Henderson DA, Pryor BM, Maier RM (2006) Bacterial community structure in the hyperarid core of the Atacama Desert, Chile. Appl Environ Microbiol 72:7902鈥?908 CrossRef
    19. Duan J, M眉ller KM, Charles TC, Vesely S, Glick BR (2009) 1-Aminocyclopropane-1-carboxylate (ACC) deaminase genes in rhizobia from southern Saskatchewan. Microb Ecol 57:423鈥?36 CrossRef
    20. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626鈥?31 CrossRef
    21. Glick BR (2004) Bacterial ACC deaminase and the alleviation of plant stress. Adv Appl Microbiol 56:291鈥?12 CrossRef
    22. Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231鈥?240 CrossRef
    23. Hamaki T, Suzuki M, Fudou R, Jojima Y, Kajiura T, Tabuchi A, Sen K, Shibai H (2005) Isolation of novel bacteria and actinomycetes using soil-extract agar medium. J Biosci Bioeng 99:485鈥?92 CrossRef
    24. Huang H, Shi P, Wang Y, Luo H, Shao N, Wang G, Yang P, Yao B (2009) Diversity of beta-propeller phytase genes in the intestinal contents of grass carp provides insight into the release of major phosphorus from phytate in nature. Appl Environ Microbiol 75:1508鈥?516 CrossRef
    25. Iwamoto T, Tani K, Nakamura K, Suzuki Y, Kitagawa M, Eguchi M, Nasu M (2000) Monitoring impact of in situ biostimulation treatment on groundwater bacterial community by DGGE. FEMS Microbiol Ecol 32:129鈥?41 CrossRef
    26. Jha CK, Annapurna K, Saraf M (2012) Isolation of rhizobacteria from / Jatropha curcas and characterization of produced ACC deaminase. J Basic Microbiol 52:285鈥?95 CrossRef
    27. Jorquera MA, Hern谩ndez MT, Rengel Z, Marschner P, Mora ML (2008) Isolation of culturable phosphobacteria with both phytate-mineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil. Biol Fertil Soils 44:1025鈥?034 CrossRef
    28. Jorquera MA, Hern谩ndez M, Mart铆nez O, Marschner P, Mora ML (2010) Detection of aluminium tolerance plasmids and microbial diversity in the rhizosphere of plants grown in acidic volcanic soil. Eur J Soil Biol 46:255鈥?63 CrossRef
    29. Jorquera MA, Crowley DE, Marschner P, Greiner R, Fern谩ndez MT, Romero D, Menezes-Blackburn D, Mora ML (2011) Identification of 尾-propeller phytase-encoding genes in culturable / Paenibacillus and / Bacillus spp. from the rhizosphere of pasture plants on volcanic soils. FEMS Microbiol Ecol 75:163鈥?72 CrossRef
    30. Jorquera MA, Shaharoona B, Nadeem SM, Mora ML, Crowley DE (2012) Plant growth-promoting rhizobacteria associated with ancient clones of creosote bush ( / Larrea tridentata). Microb Ecol 64:1008鈥?017 CrossRef
    31. Jorquera MA, Mart铆nez OA, Marileo LG, Acu帽a JJ, Saggar S, Mora ML (2013) Effect of nitrogen and phosphorus fertilization on the composition of rhizobacterial communities of two Chilean Andisol pastures. World J Microbiol Biotechnol 30:99鈥?07 CrossRef
    32. Kamala-Kannan S, Lee KJ, Park SM, Chae JC, Yun BS, Lee YH, Park YJ, Oh BT (2010) Characterization of ACC deaminase gene in / Pseudomonas entomophila strain PS-PJH isolated from the rhizosphere soil. J Basic Microbiol 50:200鈥?05
    33. Kang BG, Kim WT, Yun HS, Chang SC (2010) Use of plant growth-promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnol Rep 4:179鈥?83 CrossRef
    34. Kerovuo J, Lauraeus M, Nurminen P, Kalkkinen N, Apajalahti J (1998) Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from / Bacillus subtilis. Appl Environ Microbiol 64:2079鈥?085
    35. Lim BL, Yeung P, Cheng C, Hill JE (2007) Distribution and diversity of phytate-mineralizing bacteria. ISME J 1:321鈥?30
    36. Lombard N, Prestat E, van Elsas JD, Simonet P (2011) Soil-specific limitations for access and analysis of soil microbial communities by metagenomics. FEMS Microbiol Ecol 78:31鈥?9 CrossRef
    37. Marschner P, Yang CH, Lieberei R, Crowley DE (2001) Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol Biochem 33:1437鈥?445 CrossRef
    38. Mart铆nez OA, Jorquera MA, Crowley DE, Mora ML (2011) Influence of nitrogen fertilisation on pasture culturable rhizobacteria occurrence and the role of environmental factors on their potential PGPR activities. Biol Fertil Soils 47:875鈥?85 CrossRef
    39. Mart铆nez-Viveros O, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293鈥?19 CrossRef
    40. Mayak S, Tirosh T, Glick BR (2004a) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565鈥?72 CrossRef
    41. Mayak S, Tirosh T, Glick BR (2004b) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525鈥?30 CrossRef
    42. Mendes LW, Kuramae EE, Navarrete AA, van Veen JA, Tsai SM (2014) Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J. doi:10.1038/ismej.2014.17
    43. Mullen MD (2005) Phosphorus in soils: biological interactions. In: Hillel D, Rosenzweig C, Powlson D, Scow K, Singer M, Sparks D (eds) Encyclopedia of soils in the environment, vol 3, Academic. Elsevier Ltd., Oxford, pp 210鈥?15
    44. Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31鈥?6 CrossRef
    45. Nadeem SM, Zahir ZA, Naveed M, Ashraf M (2010) Microbial ACC-deaminase: prospects and applications for inducing salt tolerance in plants. CRC Crit Rev Plant Sci 29:360鈥?93 CrossRef
    46. Nakamura K, Hiraishi A, Yoshimi Y et al (1995) / Microlunatus phosphovorus gen. nov., sp. nov., a new gram-positive polyphosphate-accumulating bacterium isolated from activated sludge. Int J Syst Bacteriol 45:17鈥?2 CrossRef
    47. Neilson JW, Quade J, Ortiz M, Nelson WM, Legatzki A, Tian F, LaComb M, Betancourt JL, Wing RA, Soderlund CA, Maier RM (2012) Life at the hyperarid margin: novel bacterial diversity in arid soils of the Atacama Desert, Chile. Extremophiles 16:553鈥?66 CrossRef
    48. Palacios O, Bashan Y, de Bashan LE (2014) Proven and potential involvement of vitamins in interactions of plants with plant-growth-promoting bacteria鈥攁n overview. Biol Fertil Soils 50:415鈥?32 CrossRef
    49. Pastorelli R, Piccolo R, Simoncini S, Landi S (2013) New primers for denaturing gradient gel electrophoresis analysis of nitrate-reducing bacterial community in soil. Pedosphere 23:340鈥?49 CrossRef
    50. Patten CL, Glick BR (2002) Role of / Pseudomonas putida indole acetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795鈥?801 CrossRef
    51. Peace TA, Brock KV, Stills HF Jr (1994) Comparative analysis of the 16S rRNA gene sequence of the putative agent of proliferative ileitis of hamsters. Int J Syst Bacteriol 44:832鈥?35 CrossRef
    52. Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118:10鈥?5 CrossRef
    53. Ramond JB, Tshabuse F, Bopda CW, Cowan DA, Tuffin MI (2013) Evidence of variability in the structure and recruitment of rhizospheric and endophytic bacterial communities associated with arable sweet sorghum ( / Sorghum bicolor (L) Moench). Plant Soil 372:265鈥?78 CrossRef
    54. Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol 28:897鈥?06
    55. Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol 156:989鈥?96 CrossRef
    56. Saul-Tcherkas V, Unc A, Steinberger Y (2013) Soil microbial diversity in the vicinity of desert shrubs. Microb Ecol 65:689鈥?99 CrossRef
    57. Shoebitz M, Ribaudo CM, Pardo MA, Cantore ML, Ciampi L, Cur谩 JA (2009) Plant growth promoting properties of a strain of / Enterobacter ludwigii isolated from / Lolium perenne rhizosphere. Soil Biol Biochem 41:1768鈥?774 CrossRef
    58. Somerfield PJ (2008) Identification of the Bray鈥揅urtis similarity index: comment on Yoshioka (2008). Mar Ecol Prog Ser 372:303鈥?06 CrossRef
    59. Steen I (1998) Phosphorus availability in the 21st century: management of a non-renewable resource. Phosphorus Potassium 217:25鈥?1
    60. Timmusk S, Paalme V, Pavlicek T, Bergquist J, Vangala A, Danilas T, Nevo E (2011) Bacterial distribution in the rhizosphere of wild barley under contrasting microclimates. PLoS ONE 6:e17968. doi:10.1371/journal.pone.0017968 CrossRef
    61. Turner BL, Paph谩zy MJ, Haygarth PM, McKelvie ID (2002) Inositol phosphates in the environment. Philos Trans R Soc Lond B Biol Sci 357:449鈥?69 CrossRef
    62. Tye AJ, Siu FKY, Leung TYC, Lim BL (2002) Molecular cloning and the biochemical characterization of two novel phytases from / B. subtilis 168 and / B. licheniformis. Appl Microbiol Biotechnol 59:190鈥?07 CrossRef
    63. Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Mo毛nne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dy茅 F, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:1鈥?9 CrossRef
    64. van Elsas JD, Boersma FGH (2011) A review of molecular methods to study the microbiota of soil and the mycosphere. Eur J Soil Biol 47:77鈥?7 CrossRef
    65. Van Kauwenbergh SJ (2010) World phosphate rock reserves and resources. International Fertilizer Development Centre, 48 pp. Muscle Shoals, Alabama, USA
    66. Warncke D, Brown JR (1998) Potassium and other basic cations. In: Brown JR (ed) Recommended chemical soil test procedures for the North Central Region. NCR Publication No. 221. Missouri Agricultural Experiment Station, Columbia, 31鈥?3 pp
  • 作者单位:Milko A. Jorquera (1)
    Nitza G. Inostroza (1)
    Lorena M. Lagos (2)
    Patricio J. Barra (2)
    Luis G. Marileo (2)
    Joaquin I. Rilling (2)
    Daniela C. Campos (1)
    David E. Crowley (3)
    Alan E. Richardson (4)
    Mar铆a L. Mora (1)

    1. Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco, Chile
    2. Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco, Chile
    3. Department of Environmental Sciences, University of California Riverside, 900 University Ave, Riverside, CA, 92521, USA
    4. CSIRO Plant Industry, PO Box 1600, Canberra, Australia, 2601
  • ISSN:1432-0789
文摘
Soil microorganisms with phytase- and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activities are widely studied as plant growth-promoting rhizobacteria (PGPR). Here, we explored the bacterial community structure and occurrence of putative PGPR in plants grown in agro-ecosystems and undisturbed ecosystems from northern, central, and southern Chile. Total rhizobacterial community structure was evaluated by denaturing gradient gel electrophoresis, and dominant bands present in diverse ecosystems were sequenced. Significant differences in total bacterial communities were shown with some bacterial orders (Enterobacteriales, Actinomycetales, and Rhizobiales) being highly similar to both ecosystems. Twenty-nine putative PGPR, showing phytate- and ACC-degrading activities and production of auxin, were selected from across the sites. Based on 16S rRNA gene sequencing, the putative PGPR were characterized as Enterobacteriales (Enterobacter, Serratia, Pantoea, Rahnella, Leclercia), Pseudomonas, and Bacillus, consistent with previously reported PGPR and endophytic bacteria. Beta-propeller phytase genes with similarity to Bacillus were also identified. PGPR from agro-ecosystems appeared to show higher auxin production compared to those from undisturbed ecosystems. This study demonstrates that putative PGPR are widely distributed across Chilean soils. Further understanding of their contribution to the growth and adaptation of plant hosts to local soil conditions may provide opportunity for development of new PGPR in Chilean agriculture.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700