用户名: 密码: 验证码:
Influence of Pressurization Rate and Mode on Inactivation of Natural Microorganisms in Purple Sweet Potato Nectar by High Hydrostatic Pressure
详细信息    查看全文
  • 作者:Yongtao Wang (1) (2) (3)
    Junjie Yi (1) (2) (3)
    Jianyong Yi (1) (2) (3)
    Peng Dong (1) (2) (3)
    Xiaosong Hu (1) (2) (3)
    Xiaojun Liao (1) (2) (3)
  • 关键词:High hydrostatic pressure ; Pressurization rate ; Pressurization mode ; Total aerobic bacteria ; Yeasts and molds ; Purple sweet potato nectar
  • 刊名:Food and Bioprocess Technology
  • 出版年:2013
  • 出版时间:June 2013
  • 年:2013
  • 卷:6
  • 期:6
  • 页码:1570-1579
  • 全文大小:238KB
  • 参考文献:1. Ardia, A., Knorr, D., & Heinz, V. (2004). Adiabatic heat modelling for pressure build-up during high-pressure treatment in liquid-food processing. / Food and Bioproducts Processing, 82(C1), 89-5. CrossRef
    2. Arroyo, G., Sanz, P. D., & Préstamo, G. (1999). Response to high-pressure, low-temperature treatment in vegetables: determination of survival rates of microbial populations using flow cytometry and detection of peroxidase activity using confocal microscopy. / Journal of Applied Microbiology, 86(3), 544-56. CrossRef
    3. Avsaroglu, D. M., Buzrul, S., Alpas, H., Akcelik, M., & Bozoglu, F. (2006). Use of the Weibull model for lactococcal bacteriophage inactivation by high hydrostatic pressure. / International Journal of Food Microbiology, 108(1), 78-3. CrossRef
    4. Balasubramaniam, V. M., Farkas, D., & Turek, E. J. (2008). Preserving foods through high-pressure processing. / Food Technology, 11(8), 32-8.
    5. Black, E. P., Setlow, P., Hocking, A. D., Stewart, C. M., Kelly, A. L., & Hoover, D. G. (2007). Response of spores to high-pressure processing. / Comprehensive Reviews in Food Science and Food Safety, 6(4), 102-19. CrossRef
    6. Buzrul, S. (2009). Modeling and predicting inactivation of / Escherichia coli under isobaric and dynamic high hydrostatic pressure. / Innovative Food Science and Emerging Technologies, 10(4), 391-95. CrossRef
    7. Buzrul, S., Alpas, H., & Bozoglu, F. (2005). Use of Weibull frequency distribution model to describe the inactivation of / Alicyclobacillus acidoterrestris by high pressure at different temperatures. / Food Research International, 38(2), 151-57. CrossRef
    8. Chapleau, N., Ritz, M., Delépine, S., Jugiau, F., Fedeighi, M., & de Lamballerie, M. (2006). Influence of kinetic parameters of high pressure processing on bacterial inactivation in a buffer system. / International Journal of Food Microbiology, 106(3), 324-30. CrossRef
    9. Chen, H. (2007). Use of linear, Weibull, and log-logistic functions to model pressure inactivation of seven foodborne pathogens in milk. / Food Microbiology, 24(3), 197-04. CrossRef
    10. Chen, H., & Hoover, D. G. (2003). Pressure inactivation kinetics of / Yersinia enterocolitica ATCC 35669. / International Journal of Food Microbiology, 87(1-), 161-71. CrossRef
    11. Chen, H., & Hoover, D. G. (2004). Use of Weibull model to describe and predict pressure inactivation of / Listeria monocytogenes Scott A in whole milk. / Innovative Food Science and Emerging Technologies, 5(3), 269-76. CrossRef
    12. Chen, H., Hoover, D. G., & Kingsley, D. H. (2005). Temperature and treatment time influence high hydrostatic pressure inactivation of feline calicivirus, a norovirus surrogate. / Journal of Food Protection, 68(11), 2389-394.
    13. Fernandez, A., Collado, J., Cunha, L. M., Ocio, M. J., & Martinez, A. (2002). Empirical model building based on Weibull distribution to describe the joint effect of pH and temperature on the thermal resistance of / Bacillus cereus in vegetable substrate. / International Journal Food Microbiology, 77(1-), 147-53. CrossRef
    14. Goda, Y., Shimizu, T., Kato, Y., Nakatani, M., Maitani, T., Yamada, T., Terahara, N., & Yamaguchi, M. (1997). Two acylated anthocyanins from purple sweet potato. / Phytochemistry, 44(1), 183-86. CrossRef
    15. Harbourne, N., Jacquier, J. C., Morgan, D. J., & Lyng, J. G. (2008). Determination of the degradation kinetics of anthocyanins in a model juice system using isothermal and non-isothermal methods. / Food Chemistry, 111(1), 204-08. CrossRef
    16. Hayakawa, I., Furukawa, S., Midzunaga, A., Horiuchi, H., Nakashima, T., Fujio, Y., Yano, Y., Ishikura, T., & Saaki, K. (1998). Mechanism of inactivation of heat-tolerant spores of / Bacillus stearothermophilus IFO 12550 by rapid decompression. / Journal of Food Science, 63(3), 371-74. CrossRef
    17. Hendrickx, M., & Knorr, D. (2002). Ultra high pressure treatment of foods. In G. V. Barbosa-Canovas (Ed.), / High pressure equipment designs for food processing applications (pp. 297-12). New York: Kluwer Academic.
    18. Herdegen V. (1998). Hochdruckinaktivierung von Mikroorganismen in Lebensmitteln und Lebensmittelreststoffen. Technische Universit?t München. (Dissertation).
    19. Huppertz, T., Fox, P. F., de-Kruif, K. G., & Kelly, A. L. (2006). High pressure-induced changes in bovine milk proteins: a review. / Biochimica et Biophysica Acta, 1764(3), 593-98. CrossRef
    20. Kano, M., Takayanagi, T., Harada, K., Makino, K., & Ishikawa, F. (2005). Antioxidant activity of anthocyanins from purple sweet potato, / Ipomoera batatas cultivar Ayamurasaki. / Bioscience, Biotechnology and Biochemistry, 69(5), 979-88. CrossRef
    21. Knorr, D. (1993). Effects of high hydrostatic pressure processes on food safety and quality. / Food Technology, 47(6), 56-61.
    22. Koseki, S., & Yamamoto, K. (2007). A novel approach to predicting microbial inactivation kinetics during high hydrostatic pressure. / International Journal of Food Microbiolology, 116(2), 275-82. CrossRef
    23. Lavinas, F. C., Miguel, M. A. L., Lopes, M. L. M., & Valente Mesquita, V. L. (2008). Effect of high hydrostatic pressure on cashew apple ( / Anacardium occidentale L.) juice preservation. / Journal of Food Science, 73(6), 273-77. CrossRef
    24. Lee, D. U., Heinz, V., & Knorr, D. (2001). Biphasic inactivation kinetics of / Escherichia coli in liquid whole egg by high hydrostatic pressure treatments. / Biotechnology Progress, 17(6), 1020-025. CrossRef
    25. López-Malo, A., Palou, E., Barbosa-Cánovas, G. V., Welti-Chanes, J., & Swanson, B. G. (1999). Polyphenoloxidase activity and color changes during storage of high hydrostatic pressure treated avocado puree. / Food Research International, 31(8), 549-56. CrossRef
    26. Margosch, D., Ehrmann, M. A., Buckow, R., Heinz, V., Vogel, R. F., & G?nzle, M. G. (2006). High-pressure-mediated survival of / clostridium botulinum and / bacillus amyloliquefaciens endospores at high temperature. / Applied and Environmental Microbiology, 72(5), 3476-481. CrossRef
    27. Mújica-Paz, H., Valdez-Fragoso, A., Samson, T. C., Welti-Chanes, J., & Torres, A. J. (2011). High-pressure processing technologies for the pasteurization and sterilization of foods. / Food and Bioprocess Technology, 4(6), 969-85. CrossRef
    28. Noma, S., Shimoda, M., & Hayakawa, I. (2002). Inactivation of vegetative bacteria by rapid decompression treatment. / Journal of Food Science, 67(9), 3408-411. CrossRef
    29. Noma, S., Tomita, C., Shimoda, M., & Hayakawa, I. (2004). Response of / Escherichia coli O157:H7 in apple and orange juices by hydrostatic pressure treatment with rapid decompression. / Food Microbiology, 21(4), 469-73. CrossRef
    30. Odake, K., Terahara, N., Saito, N., Toki, K., & Honda, T. (1992). Chemical structures of two anthocyanins from purple sweet potato, / Ipomoea batatas. / Phytochemistry, 31(6), 2127-130. CrossRef
    31. Ogihara, H., Yatuzuka, M., Horie, N., Furukawa, S., & Yamasaki, M. (2009). Synergistic effect of high hydrostatic pressure treatment and food additives on the inactivation of / Salmonella enteritidis. / Food Control, 20(11), 963-66. CrossRef
    32. Oki, T., Masuda, M., Furuta, S., Nishiba, Y., Terahara, N., & Suda, I. (2002). Involvement of anthocyanins and other phenolic compounds in radical-scavenging activity of purple-fleshed sweet potato cultivars. / Journal of Food Science, 67(5), 1752-756. CrossRef
    33. Paidhungat, M., Setlow, B., Daniels, W. B., Hoover, D., Papafragkou, E., & Setlow, P. (2002). Mechanisms of induction of germination of / Bacillus subtilis spores by high pressure. / Applied and Environmental Microbiology, 68(6), 3172-175. CrossRef
    34. Panagou, E. Z., Tassou, C. C., Manitsa, C., & Mallidis, C. (2007). Modelling the effect of high pressure on the inactivation kinetics of a pressure-resistant strain of / Pediococcus damnosus in phosphate buffer and gilt-head seabream ( / Sparus aurata). / Journal of Applied Microbiology, 102(6), 1499-507. CrossRef
    35. Pehl, M., Werner, F., & Delgado, A. (2000). First visualization of temperature fields in liquids at high pressure using thermochromic liquid crystals. / Experiments in Fluids, 29(3), 302-04. CrossRef
    36. Peleg, M., & Cole, M. B. (1998). Reinterpretation of microbial survival curves. / Critical Reviews in Food Science and Nutrition, 38(5), 353-80. CrossRef
    37. Pereira, R. N., & Vicente, A. A. (2010). Environmental impact of novel thermal and non-thermal technologies in food processing. / Food Research International, 43(7), 1936-943. CrossRef
    38. Ramirez, R., Saraiva, J., Lamela, C. P., & Torres, J. A. (2009). Reaction kinetics analysis of chemical changes in pressure-assisted thermal processing. / Food Engineering Reviews, 1(1), 16-0. CrossRef
    39. Ratphitagsanti, W., Ahn, J., Balasubramaniam, V. M., & Yousef, A. E. (2009). Influence of pressurization rate and pressure pulsing on the inactivation of / bacillus amyloliquefaciens spores during pressure-assisted thermal processing. / Journal of Food Protection, 72(4), 775-82.
    40. San Martín-González, M. F., Welti-Chanes, J., & Barbosa-Cánovas, G. V. (2006). Cheese manufacture assisted by high pressure. / Food Reviews International, 22(3), 275-89. CrossRef
    41. Smelt, J. P. P. M. (1998). Recent advances in the microbiology of high pressure processing. / Trends in Food Science and Technology, 9(4), 152-58. CrossRef
    42. Tay, A., Shellhammer, T. H., Yousef, A. E., & Chism, G. W. (2003). Pressure death and tailing behavior of / Listeria monocytogenes strains having different barotolerances. / Journal of Food Protection, 66(11), 2057-061.
    43. Terahara, N., Shimizu, T., Kato, Y., Nakamura, M., Maitani, T., Yamaguchi, M.-A., & Goda, Y. (1999). Six diacylated anthocyanins from the storage roots of purple sweet potato, / Ipomoea batatas. / Bioscience, Biotechnology and Biochemistry, 63(8), 1420-424. CrossRef
    44. Voigt, D. D., Chevalier, F., Qian, M. C., & Kelly, A. L. (2010). Effect of high-pressure treatment on microbiology, proteolysis, lipolysis and levels of flavour compounds in mature blue-veined cheese. / Innovative Food Science and Emerging Technologies, 11(1), 68-7. CrossRef
    45. Wuytack, E. Y., Boven, S., & Michiels, C. W. (1998). Comparative study of pressure-induced germination of / Bacillus subtilis spores at low and high pressures. / Applied and Environmental Microbiology, 64(9), 3220-224.
    46. Xiong, R., Xie, G., Edmondson, A. S., Linton, R. H., & Sheard, M. A. (1999). Comparison of the Baranyi model with the modified Gompertz equation for modelling thermal inactivation of / Listeria monocytogenes Scott A. / Food Microbiology, 16(3), 269-79. CrossRef
  • 作者单位:Yongtao Wang (1) (2) (3)
    Junjie Yi (1) (2) (3)
    Jianyong Yi (1) (2) (3)
    Peng Dong (1) (2) (3)
    Xiaosong Hu (1) (2) (3)
    Xiaojun Liao (1) (2) (3)

    1. College of Food Science and Nutritional Engineering, China Agricultural University, No.17, Qinghua East Road, Haidian District, Beijing, 100083, People’s Republic of China
    2. National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
    3. Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, 100083, China
  • ISSN:1935-5149
文摘
High hydrostatic pressure (HHP) processing was applied for inactivation of natural microorganisms, including total aerobic bacteria (TAB), and yeasts and molds (Y&M) in purple sweet potato nectar (PSPN). The pressurization rates were 60 and 120?MPa/min, the pressurization modes were stepwise and linear, the pressure-holding times were 2.5-5?min, and the pressure levels were 400-00?MPa. In all the experimental conditions, the Y&M in PSPN were not detected, the maximum reduction of TAB was greater than 4 log cycles, and the inactivation of TAB was closely related to the HHP parameters. The fast pressurization rate and linear pressurization mode enhanced the inactivation effect of HHP on TAB. With increasing the pressure level and pressure-holding times, the inactivation of TAB was also enhanced. The mathematical models were fitted to the inactivation kinetic data of TAB and fitness of these models was investigated; the Weibull and Biphasic model successfully fitted all the inactivation curves. Pressurization rate and mode had a significant impact on the parameters of the models.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700