用户名: 密码: 验证码:
A thermo-halo-tolerant and proteinase-resistant endoxylanase from Bacillus sp. HJ14
详细信息    查看全文
  • 作者:Junpei Zhou (1) (2) (3)
    Qian Wu (1) (2) (3)
    Rui Zhang (1) (2) (3)
    Minghe Mo (4)
    Xianghua Tang (1) (2) (3)
    Junjun Li (1) (2) (3)
    Bo Xu (1) (2) (3)
    Junmei Ding (1) (2) (3)
    Qian Lu (2)
    Zunxi Huang (1) (2) (3)
  • 刊名:Folia Microbiologica
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:59
  • 期:5
  • 页码:423-431
  • 全文大小:2,360 KB
  • 参考文献:1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403-10. doi:10.1006/jmbi.1990.9999 CrossRef
    2. Bai WQ, Xue YF, Zhou C, Ma YH (2012) Cloning, expression and characterization of a novel salt-tolerant xylanase from / Bacillus sp. SN5. Biotechnol Lett 34(11):2093-099. doi:10.1007/s10529-012-1011-7 CrossRef
    3. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1-):248-54. doi:10.1016/0003-2697(76)90527-3 CrossRef
    4. Cao L, Wang WM, Yang CT, Yang Y, Diana J, Yakupitiyage A, Luo Z, Li DP (2007) Application of microbial phytase in fish feed. Enzym Microb Technol 40(4):497-07. doi:10.1016/j.enzmictec.2007.01.007 CrossRef
    5. Caspers MPM, Lok F, Sinjorgo KMC, van Zeijl MJ, Nielsen KA, Cameron-Mills V (2001) Synthesis, processing and export of cytoplasmic endo-β-1,4-xylanase from barley aleurone during germination. Plant J 26(2):191-04. doi:10.1046/j.0960-7412.2001.01019.x CrossRef
    6. Chen S, Kaufman MG, Miazgowicz KL, Bagdasarian M, Walker ED (2013) Molecular characterization of a cold-active recombinant xylanase from / Flavobacterium johnsoniae and its applicability in xylan hydrolysis. Bioresour Technol 128:145-55. doi:10.1016/j.biortech.2012.10.087 CrossRef
    7. Choct M, Annison G (1992) Antinutritive effect of wheat pentosans in broiler-chickens—roles of viscosity and gut microflora. Br Poult Sci 33(4):821-34. doi:10.1080/00071669208417524 CrossRef
    8. Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29(1):3-3. doi:10.1016/j.femsre.2004.06.005 CrossRef
    9. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14(6):1188-190. doi:10.1101/gr.849004 CrossRef
    10. Du YL, Shi PJ, Huang HQ, Zhang X, Luo HY, Wang YR, Yao B (2013) Characterization of three novel thermophilic xylanases from / Humicola insolens Y1 with application potentials in the brewing industry. Bioresour Technol 130:161-67. doi:10.1016/j.biortech.2012.12.067 CrossRef
    11. Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR, Ceric G, Forslund K, Eddy SR, Sonnhammer ELL, Bateman A (2008) The Pfam protein families database. Nucleic Acids Res 36:D281–D288. doi:10.1093/nar/gkm960 CrossRef
    12. Gallardo O, Pastor FIJ, Polaina J, Diaz P, Lysek R, Vogel P, Isorna P, Gonzalez B, Sanz-Aparicio J (2010) Structural insights into the specificity of Xyn10B from / Paenibacillus barcinonensis and its improved stability by forced protein evolution. J Biol Chem 285(4):2721-733. doi:10.1074/jbc.M109.064394 CrossRef
    13. Giridhar PV, Chandra TS (2010) Production of novel halo-alkali-thermo-stable xylanase by a newly isolated moderately halophilic and alkali-tolerant / Gracilibacillus sp. TSCPVG. Process Biochem 45(10):1730-737. doi:10.1016/j.procbio.2010.07.012 CrossRef
    14. Guo B, Chen XL, Sun CY, Zhou BC, Zhang YZ (2009) Gene cloning, expression and characterization of a new cold-active and salt-tolerant endo-β-1,4-xylanase from marine / Glaciecola mesophila KMM 241. Appl Microbiol Biotechnol 84(6):1107-115. doi:10.1007/s00253-009-2056-y CrossRef
    15. Hung KS, Liu SM, Tzou WS, Lin FP, Pan CL, Fang TY, Sun KH, Tang SJ (2011) Characterization of a novel GH10 thermostable, halophilic xylanase from the marine bacterium / Thermoanaerobacterium saccharolyticum NTOU1. Process Biochem 46(6):1257-263. doi:10.1016/j.procbio.2011.02.009 CrossRef
    16. Khandeparker R, Verma P, Deobagkar D (2011) A novel halotolerant xylanase from marine isolate / Bacillus subtilis cho40: gene cloning and sequencing. New Biotechnol 28(6):814-21. doi:10.1016/j.nbt.2011.08.001 CrossRef
    17. Kumar V, Sinha AK, Makkar HPS, De Boeck G, Becker K (2012) Phytate and phytase in fish nutrition. J Anim Physiol Anim Nutr 96(3):335-64. doi:10.1111/j.1439-0396.2011.01169.x CrossRef
    18. Li N, Meng K, Wang YR, Shi PJ, Luo HY, Bai YG, Yang PL, Yao B (2008a) Cloning, expression, and characterization of a new xylanase with broad temperature adaptability from / Streptomyces sp. S9. Appl Microbiol Biotechnol 80(2):231-40. doi:10.1007/s00253-008-1533-z CrossRef
    19. Li N, Yang PL, Wang Y, Luo HY, Meng K, Wu NF, Fan YL, Yao B (2008b) Cloning, expression, and characterization of protease-resistant xylanase from / Streptomyces fradiae var. k11. J Microbiol Biotechnol 18(3):410-16
    20. Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56(3):658-66. doi:10.1021/ja01318a036 CrossRef
    21. Luo HY, Li J, Yang J, Wang H, Yang YH, Huang HQ, Shi PJ, Yuan TZ, Fan YL, Yao B (2009) A thermophilic and acid stable family-10 xylanase from the acidophilic fungus / Bispora sp. MEY-1. Extremophiles 13(5):849-57. doi:10.1007/s00792-009-0272-0 CrossRef
    22. Margesin R, Schinner F (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5(2):73-3. doi:10.1007/s007920100184 CrossRef
    23. Menon G, Mody K, Keshri J, Jha B (2010) Isolation, purification, and characterization of haloalkaline xylanase from a marine / Bacillus pumilus strain, GESF-1. Biotechnol Bioproc Eng 15(6):998-005. doi:10.1007/s12257-010-0116-x CrossRef
    24. O'Connell S, Walsh G (2007) Purification and properties of a β-galactosidase with potential application as a digestive supplement. Appl Biochem Biotech 141(1):1-3. doi:10.1007/s12010-007-9206-4 CrossRef
    25. Prakash S, Veeranagouda Y, Kyoung L, Sreeramulu K (2009) Xylanase production using inexpensive agricultural wastes and its partial characterization from a halophilic / Chromohalobacter sp. TPSV 101. World J Microbiol Biotechnol 25(2):197-04. doi:10.1007/s11274-008-9880-6 CrossRef
    26. Prakash B, Vidyasagar M, Jayalakshmi SK, Sreeramulu K (2012) Purification and some properties of low-molecular-weight extreme halophilic xylanase from / Chromohalobacter sp. TPSV 101. J Mol Catal B Enzym 74(3-):192-98. doi:10.1016/j.molcatb.2011.10.004 CrossRef
    27. Qiu Z, Shi P, Luo H, Bai Y, Yuan T, Yang P, Liu S, Yao B (2010) A xylanase with broad pH and temperature adaptability from / Streptomyces megasporus DSM 41476, and its potential application in brewing industry. Enzym Microbiol Technol 46(6):506-12. doi:10.1016/j.enzmictec.2010.02.003 CrossRef
    28. Sakka M, Tachino S, Katsuzaki H, van Dyk JS, Pletschke BI, Kimura T, Sakka K (2012) Characterization of Xyn30A and Axh43A of / Bacillus licheniformis SVD1 identified by its genomic analysis. Enzym Microbiol Technol 51(4):193-99. doi:10.1016/j.enzmictec.2012.06.003 CrossRef
    29. Shi H, Zhang Y, Li X, Huang YJ, Wang LL, Wang Y, Ding HH, Wang F (2013) A novel highly thermostable xylanase stimulated by Ca2+ from / Thermotoga thermarum: cloning, expression and characterization. Biotechnol Biofuels 6:26. doi:10.1186/1754-6834-6-26 CrossRef
    30. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596-599. doi:10.1093/molbev/msm092 CrossRef
    31. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18(5):821-29. doi:10.1101/gr.074492.107 CrossRef
    32. Zhang JH, Siika-aho M, Puranen T, Tang M, Tenkanen M, Viikari L (2011) Thermostable recombinant xylanases from / Nonomuraea flexuosa and / Thermoascus aurantiacus show distinct properties in the hydrolysis of xylans and pretreated wheat straw. Biotechnol Biofuels 4:12. doi:10.1186/1754-6834-4-12 CrossRef
    33. Zhou JP, Dong YY, Tang XH, Li JJ, Xu B, Wu Q, Gao YJ, Pan L, Huang ZX (2012a) Molecular and biochemical characterization of a novel intracellular low-temperature-active xylanase. J Microbiol Biotechnol 22(4):501-09. doi:10.4014/jmb.1108.08006 CrossRef
    34. Zhou JP, Gao YJ, Dong YY, Tang XH, Li JJ, Xu B, Mu YL, Wu Q, Huang ZX (2012b) A novel xylanase with tolerance to ethanol, salt, protease, SDS, heat, and alkali from actinomycete / Lechevalieria sp. HJ3. J Ind Microbiol Biotechnol 39(7):965-75. doi:10.1007/s10295-012-1113-1 CrossRef
    35. Zhu YP, Li XT, Sun BG, Song HL, Li E, Song HX (2012) Properties of an alkaline-tolerant, thermostable xylanase from / Streptomyces chartreusis L1105, suitable for xylooligosaccharide production. J Food Sci 77(5):C506–C511. doi:10.1111/j.1750-3841.2012.02671.x CrossRef
  • 作者单位:Junpei Zhou (1) (2) (3)
    Qian Wu (1) (2) (3)
    Rui Zhang (1) (2) (3)
    Minghe Mo (4)
    Xianghua Tang (1) (2) (3)
    Junjun Li (1) (2) (3)
    Bo Xu (1) (2) (3)
    Junmei Ding (1) (2) (3)
    Qian Lu (2)
    Zunxi Huang (1) (2) (3)

    1. Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, People’s Republic of China
    2. College of Life Sciences, Yunnan Normal University, No.1 Yuhua District, Chenggong, Kunming, Yunnan, 650500, People’s Republic of China
    3. Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan, Kunming, 650500, People’s Republic of China
    4. Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, People’s Republic of China
  • ISSN:1874-9356
文摘
A glycosyl hydrolase family 10 endoxylanase from Bacillus sp. HJ14 was grouped in a separated cluster with another six Bacillus endoxylanases which have not been characterized. These Bacillus endoxylanases showed less than 52?% amino acid sequence identity with other endoxylanases and far distance with endoxylanases from most microorganisms. Signal peptide was not detected in the endoxylanase. The endoxylanase was expressed in Escherichia coli BL21 (DE3), and the purified recombinant enzyme (rXynAHJ14) was characterized. rXynAHJ14 was apparent optimal at 62.5?°C and pH 6.5 and retained more than 55?% of the maximum activity when assayed at 40-5?°C, 23?% at 20?°C, 16?% at 85?°C, and even 8?% at 0?°C. Half-lives of the enzyme were more than 60?min, approximately 25 and 4?min at 70, 75, and 80?°C, respectively. The enzyme exhibited more than 62?% xylanase activity and stability at the concentration of 3-0?% (w/v) NaCl. No xylanase activity was lost after incubation of the purified rXynAHJ14 with trypsin and proteinase K at 37?°C for 60?min. Different components of oligosaccharides were detected in the time-course hydrolysis of beechwood xylan by the enzyme. During the simulated intestinal digestion phase in vitro, 11.5-9.0, 15.3-9.0, 21.9-7.7, and 28.2-1.2?μmol/mL reducing sugar were released by the purified rXynAHJ14 from soybean meal, wheat bran, beechwood xylan, and rapeseed meal, respectively. The endoxylanase might be an alternative for potential applications in the processing of sea food and saline food and in aquaculture as agastric fish feed additive.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700