V) characteristics in series with each memristor in crossbar arrays. Here, we demonstrate a novel selector device based on graphene–oxide heterostructures, which successfully converts a typical linear TaO x memristor into a nonlinear device. The origin of the nonlinearity in the heterostructures is studied in detail, which highlights an important role of the graphene–oxide interfaces." />
用户名: 密码: 验证码:
A selector device based on graphene–oxide heterostructures for memristor crossbar applications
详细信息    查看全文
  • 作者:Miao Wang ; Xiaojuan Lian ; Yiming Pan ; Junwen Zeng ; Chengyu Wang…
  • 刊名:Applied Physics A: Materials Science & Processing
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:120
  • 期:2
  • 页码:403-407
  • 全文大小:2,128 KB
  • 参考文献:1.L. Chua, Appl. Phys. A 102, 765-83 (2011)ADS View Article
    2.J.J. Yang, D.B. Strukov, D.R. Stewart, Nat. Nanotechnol. 8, 13-4 (2013)ADS View Article
    3.J.J. Yang, M.X. Zhang, M.D. Pickett, F. Miao, J.P. Strachan, W. Li, W. Yi, D.A.A. Ohlberg, B.J. Choi, W. Wu, J.H. Nickel, G. Medeiros-Ribeiro, R.S. Williams, Appl. Phys. Lett. 100, 113501 (2012)ADS View Article
    4.M. Lee, C.B. Lee, D. Lee, S.R. Lee, M. Chang, J.H. Hur, Y. Kim, C. Kim, D.H. Seo, S. Seo, U. Chung, I. Yoo, K. Kim, Nat. Mater. 10, 625-30 (2011)ADS View Article
    5.M. Lee, S.I. Kim, C.B. Lee, H. Yin, S. Ahn, B.S. Kang, K.H. Kim, J.C. Park, C.J. Kim, I. Song, S.W. Kim, G. Stefanovich, J.H. Lee, S.J. Chung, Y.H. Kim, Y. Park, Adv. Funct. Mater. 19, 1587-593 (2009)View Article
    6.K.M. Kim, S.J. Song, G.H. Kim, J.Y. Seok, M.H. Lee, J.H. Yoon, J. Park, C.S. Hwang, Adv. Funct. Mater. 21, 1587-592 (2011)View Article
    7.H.S.P. Wong, H. Lee, S. Yu, Y. Chen, Y. Wu, P. Chen, B. Lee, F.T. Chen, M. Tsai, Proc. IEEE 100, 1951-970 (2012)View Article
    8.H. Akinaga, H. Shima, Proc. IEEE 98, 2237-251 (2010)View Article
    9.Y. Yang, P. Gao, L. Li, X. Pan, S. Tappertzhofen, S. Choi, R. Waser, I. Valov, W.D. Lu, Nat. Commun. 5, 4232 (2014)ADS
    10.I. Valov, I. Sapezanskaia, A. Nayak, T. Tsuruoka, T. Bredow, T. Hasegawa, G. Staikov, M. Aono, R. Waser, Nat. Mater. 11, 530-35 (2012)ADS View Article
    11.F. Miao, J.J. Yang, J. Borghetti, G. Medeiros-Ribeiro, R.S. Williams, Nanotechnology 22, 254007 (2011)ADS View Article
    12.E. Linn, R. Rosezin, C. Kuegeler, R. Waser, Nat. Mater. 9, 403-06 (2010)ADS View Article
    13.S.H. Chang, S.B. Lee, D.Y. Jeon, S.J. Park, G.T. Kim, S.M. Yang, S.C. Chae, H.K. Yoo, B.S. Kang, M. Lee, T.W. Noh, Adv. Mater. 23, 4063 (2011)View Article
    14.F. Miao, W. Yi, I. Goldfarb, J.J. Yang, M. Zhang, M.D. Pickett, J.P. Strachan, G. Medeiros-Ribeiro, R.S. Williams, ACS Nano 6, 2312-318 (2012)View Article
    15.A.C. Torrezan, J.P. Strachan, G. Medeiros-Ribeiro, R.S. Williams, Nanotechnology 22, 485203 (2011)View Article
    16.F. Miao, J.P. Strachan, J.J. Yang, M. Zhang, I. Goldfarb, A.C. Torrezan, P. Eschbach, R.D. Kelley, G. Medeiros-Ribeiro, R.S. Williams, Adv. Mater. 23, 5633 (2011)View Article
    17.J.P. Strachan, A.C. Torrezan, G. Medeiros-Ribeiro, R.S. Williams, Nanotechnology 22, 505402 (2011)ADS View Article
    18.G.W. Burr, R.S. Shenoy, K. Virwani, P. Narayanan, A. Padilla, B. Kurdi, H. Hwang, J. Vac. Sci. Technol. B 32, 40802 (2014)View Article
    19.J.Y. Seok, S.J. Song, J.H. Yoon, K.J. Yoon, T.H. Park, D.E. Kwon, H. Lim, G.H. Kim, D.S. Jeong, C.S. Hwang, Adv. Funct. Mater. 24, 5316-339 (2014)View Article
    20.R. Mandapati, A. Borkar, V.S.S. Srinivasan, P. Bafna, P. Karkare, S. Lodha, B. Rajendran, U. Ganguly, IEEE Trans. Nanotechnol. 12, 1178-184 (2013)ADS View Article
    21.W.Y. Park, G.H. Kim, J.Y. Seok, K.M. Kim, S.J. Song, M.H. Lee, C.S. Hwang, Nanotechnology 21, 195201 (2010)ADS View Article
    22.J.H. Lee, G.H. Kim, Y.B. Ahn, J.W. Park, S.W. Ryu, C.S. Hwang, H.J. Kim, Appl. Phys. Lett. 100, 123505 (2012)ADS View Article
    23.K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666-69 (2004)ADS View Article
    24.N.O. Weiss, H. Zhou, L. Liao, Y. Liu, S. Jiang, Y. Huang, X. Duan, Adv. Mater. 24, 5782-825 (2012)View Article
    25.K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Solid State Commun. 146, 351-55 (2008)ADS View Article
    26.A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109-62 (2009)ADS View Article
    27.W. Bao, F. Miao, Z. Chen, H. Zhang, W. Jang, C. Dames, C.N. Lau, Nat. Nanotechnol. 4, 562-66 (2009)ADS View Article
    28.Y. Yang, J. Lee, S. Lee, C. Liu, Z. Zhong, W. Lu, Adv. Mater. 26, 3693-699 (2014)View Article
    29.M. Qian, Y. Pan, F. Liu, M. Wang, H. Shen, D. He, B. Wang, Y. Shi, F. Miao, X. Wang, Adv. Mater. 26, 3275 (2014)View Article
    30.W. Bao, G. Liu, Z. Zhao, H. Zhang, D. Yan, A. Deshpande, B.J. LeRoy, C.N. Lau, Nano Res. 3, 98 (2010)View Article
    31.J.J. Yang, J. Borghetti, D. Murphy, D.R. Stewart, R.S. Williams, Adv. Mater. 21, 3754-758 (2009)View Article
    32.J.J. Yang, M.X. Zhang, J.P. Strachan, F. Miao, M.D. Pickett, R.D. Kelley, G. Medeiros-Ribeiro, R.S. Williams, Appl. Phys. Lett. 97, 232102 (2010)ADS View Article
    33.E.L. Wolf, Principles of Electron Tunneling Spectroscopy (Oxford University Press, Oxford, 2012)
    34.L. Britnell, R.V. Gorbachev, R. Jalil, B.D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M.I. Katsnelson, L. Eaves, S.V. Morozov, N.M.R. Peres, J. Leist, A.K. Geim, K.S. Novoselov, L.A. Ponomarenko, Science 335, 947-50 (2012)ADS View Article
  • 作者单位:Miao Wang (1)
    Xiaojuan Lian (1)
    Yiming Pan (1)
    Junwen Zeng (1)
    Chengyu Wang (1)
    Erfu Liu (1)
    Baigeng Wang (1)
    J. Joshua Yang (2)
    Feng Miao (1)
    Dingyu Xing (1)

    1. National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
    2. Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, 01003, USA
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Condensed Matter
    Optical and Electronic Materials
    Nanotechnology
    Characterization and Evaluation Materials
    Surfaces and Interfaces and Thin Films
    Operating Procedures and Materials Treatment
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0630
文摘
Most of the potential applications of memristive devices adopt crossbar architecture for ultra-high density. One of the biggest challenges of the crossbar architecture is severe residue leakage current (sneak path) issue. A possible solution is introducing a selector device with strong nonlinear current–voltage (I-em class="EmphasisTypeItalic">V) characteristics in series with each memristor in crossbar arrays. Here, we demonstrate a novel selector device based on graphene–oxide heterostructures, which successfully converts a typical linear TaO x memristor into a nonlinear device. The origin of the nonlinearity in the heterostructures is studied in detail, which highlights an important role of the graphene–oxide interfaces.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700