用户名: 密码: 验证码:
Magnetic properties of perpendicularly orientated L10 FePt nanoparticles
详细信息    查看全文
  • 作者:XiaoJing Mo (1)
    Hui Xiang (1)
    GuoQing Li (1)
    Peng Chen (1)
    ZuHong Xiong (1)
    JunZhong Wang (1)
    ShunJi Ishio (2)
    Hitoshi Saito (2)
    ToshiYuki Shima (3)
    KoKi Takanashi (3)
  • 关键词:L10 FePt nanoparticle ; coercivity ; magnetization reversal ; magnetic domain
  • 刊名:Chinese Science Bulletin
  • 出版年:2010
  • 出版时间:March 2010
  • 年:2010
  • 卷:55
  • 期:8
  • 页码:680-686
  • 全文大小:487KB
  • 参考文献:1. Xiao M, Do H, Weresin W, et al. Recording studies of perpendicular media leading to 230 Gb/in2. J Appl Phys, 2006, 99: 08E712 CrossRef
    2. Lodder J C. Magnetic structures in Co-Cr media for perpendicular magnetic recording. J Magn Magn Mater, 1996, 159: 238-48 CrossRef
    3. Ouchi K. Recent advancements in perpendicular magnetic recording. IEEE Trans Magn, 2001, 37: 1217-222 CrossRef
    4. Wood R. The feasibility of magnetic recording at 1 Terabit per square inch. IEEE Trans Magn, 2000, 36: 36-2 CrossRef
    5. Zhuang Z. Effects of stoichiometry on the magnetic and structural properties of perpendicular barium ferrite thin film media. IEEE Trans Magn, 2000, 36: 2405-407 CrossRef
    6. Speliotis D E. Magnetic recording beyond the first 100 years. J Magn Magn Mater, 1999, 193: 29-5 CrossRef
    7. Weller D, Moser A, Folks L, et al. High / K u materials approach to 100 Gbits/in2. IEEE Trans Magn, 2000, 36: 10-5 CrossRef
    8. Verdes C, Chantrell R W, Satoh A, et al. Self-organization, orientation and magnetic properties of FePt nanoparticle arrays. J Magn Magn Mater, 2006, 304: 27-1 CrossRef
    9. Kuo C M, Kuo P C, Wu H C. Microstructure and magnetic properties of Fe100- / x Ptx alloy films. J Appl Phys, 1999, 85: 2264-269 CrossRef
    10. Xu Y F, Chen J S, Wang J P. / In situ ordering of FePt thin films with face-centered-tetragonal (001) texture on Cr100- / x Rux underlayer at low substrate temperature. Appl Phys Lett, 2002, 80: 3325-327 CrossRef
    11. Suzuki T, Honda N, Ouchi K. Magnetization reversal process in polycrystalline ordered Fe-Pt (001) thin films. J Appl Phys, 1999, 85: 4301-303 CrossRef
    12. Jeong S, Hsu Y N, Laughlin D E, et al. Magnetic properties of nanostructured CoPt and FePt thin films. IEEE Trans Magn, 2000, 36: 2336-338 CrossRef
    13. Zeng H, Yan M L, Sellmyer D J. Orientation-controlled nonepitaxial L10 CoPt and FePt films. Appl Phys Lett, 2002, 80: 2350-352 CrossRef
    14. Coffey K, Parker M A, Howard J K. High anisotropy L10 thin films for longitudinal recording. IEEE Trans Magn, 1995, 31: 2737-739 CrossRef
    15. Platt C L, Wierman K W, Svedberg E B, et al. L10 ordering and microstructure of FePt thin films with Cu, Ag, and Au additive. J Appl Phys, 2002, 92: 6104-109 CrossRef
    16. Maeda T, Kai T, Kikitsu A, et al. Reduction of ordering temperature of an FePt ordered alloy by addition of Cu. Appl Phys Lett, 2002, 80: 2147-149 CrossRef
    17. Luo C P, Sellmyer D J. Magnetic properties and structure of Fe/Pt thin films. IEEE Trans Magn, 1995, 31: 2764-766 CrossRef
    18. Shima T, Moriguchi T, Mitani S, et al. Low temperature fabrication of L10 ordered FePt alloy by alternate monatomic layer deposition. Appl Phys Lett, 2002, 80: 288-90 CrossRef
    19. Lin J J, Zhang T, Lee P, et al. Magnetic trapping induced low temperature phase transition from fcc to fct in pulsed laser deposition of FePt:Al2O3 nanocomposite thin films. Appl Phys Lett, 2007, 91: 063120 CrossRef
    20. Pan Z Y, Lin J J, Zhang T, et al. Lowering of L10 phase transition temperature of FePt thin films by single shot H+ ion exposure using plasma focus device. Thin Solid Films, 2009, 517: 2753-757 CrossRef
    21. Zhang Z G, Singh A K, Yin J H, et al. Double-layered perpendicular magnetic recording media of granular-type FePt-MgO films. J Magn Magn Mater, 2005, 287: 224-28 CrossRef
    22. Suzuki T, Honda N, Ouchi K. Fe-Pt media for perpendicular magnetic recording. IEEE Trans Magn, 1999, 35: 2748-750 CrossRef
    23. Jeong S K, McHenry M E, Laughlim D E. Growth and characterization of L10 FePt and CoPt (001) textured polycrystalline thin films. IEEE Trans Magn, 2001, 37: 1309-311 CrossRef
    24. Zhang Z G, Kang K, Suzuki T. FePt (001) texture development on an Fe-Ta-C magnetic soft underlayer with SiO2/MgO as an intermediate layer. Appl Phys Lett, 2003, 83: 1785-787 CrossRef
    25. Kim H, Lee S. Texture development and magnetic properties of sputter-deposited FePt-MgO nanocomposite films. J Appl Phys, 2005, 97: 10H304 CrossRef
    26. Sun S, Murray C B, Weller D, et al. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science, 2000, 287: 1989-992 CrossRef
    27. Sun S, Fullerton E E, Weller D, et al. Compositionally controlled FePt nanoparticle materials. IEEE Trans Magn, 2001, 37: 1239-243 CrossRef
    28. Hu J F, Chen J S, Lim B C, et al. Underlayer diffusion-induced enhancement of coercivity in high anisotropy FePt thin films. J Magn Magn Mater, 2008, 320: 3068-070 CrossRef
    29. Xu X H, Wu H S, Li X L, et al. Structure and magnetic properties of FePt and FePt/C thin films by post-annealing. Physica B, 2004, 348: 436-39 CrossRef
    30. Watanabe M, Masumoto T, Ping D H, et al. Microstructure and magnetic properties of FePt-Al-O granular thin films. Appl Phys Lett, 2000, 76: 3971-973 CrossRef
    31. Ito H, Kusunoki T, Saito H, et al. The study on the ordering mechanism in FePt thin films with rapid thermal annealing process. J Magn Magn Mater, 2004, 272-76: 2180-181 CrossRef
    32. Shima T, Takanashi K, Takanashi Y K, et al. Coercivity exceeding 100 kOe in epitaxially grown FePt sputtered films. Appl Phys Lett, 2004, 85: 2571-573 CrossRef
    33. Li G Q, Takahoshi H, Ito H, et al. Morphology and domain pattern of L10 ordered FePt films. J Appl Phys, 2003, 94: 5672-677 CrossRef
    34. Donahue M J, Porter D G. OOMMF User’s Guide Version 1.0, 1999
    35. Li G Q, Takahoshi H, Ito H, et al. Mechanism of magnetization process of island-like L10 FePt films. J Magn Magn Mater, 2005, 287: 219-23 CrossRef
    36. Li G Q, Saito H, Ishio S, et al. Asymmetric initial magnetization process of elongated particles in nucleation-type L10 FePt films. J Magn Magn Mater, 2007, 315: 126-31 CrossRef
    37. Li G Q, Saito H, Ishio S, et al. Morphology and domain pattern of epitaxially grown L10 FePt elongated particles. J Magn Magn Mater, 2007, 319: 73-9 CrossRef
  • 作者单位:XiaoJing Mo (1)
    Hui Xiang (1)
    GuoQing Li (1)
    Peng Chen (1)
    ZuHong Xiong (1)
    JunZhong Wang (1)
    ShunJi Ishio (2)
    Hitoshi Saito (2)
    ToshiYuki Shima (3)
    KoKi Takanashi (3)

    1. School of Physics Science and Technology, Southwestern University, Chongqing, 400715, China
    2. Faculty of Engineering and Resource Science, Akita University, Akita, 010-8502, Japan
    3. Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
  • ISSN:1861-9541
文摘
L10 FePt films were deposited on MgO (001) substrates heated to 700°C by magnetron sputtering. Assisted by the misfit of lattice between film and substrate, strong (001) texture was formed. The film at nominal thickness t N = 5 nm was composed of nanoparticles with a size of ?0 nm, and showed a high coercivity of ?05 kOe at 4.2 K. At t N =?0 nm, as the film changed from discontinuous to continuous, the coercivity dropped about one order of magnitude. Micromagnetic simulation implies that the magnetization reversal is a vortex-like nuclear type. The ideal coercivity of a separated single-domain L10 FePt nanoparticle with a size of 70 nm× 70 nm× 5 nm is ?21 kOe. This tells us that the experimental coercivity has nearly reached the limit of ideal single crystalline nanoparticles.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700