用户名: 密码: 验证码:
Pyrosequencing reveals bacterial diversity in Korean traditional wheat-based nuruk
详细信息    查看全文
  • 作者:Jyotiranjan Bal ; Suk-Hyun Yun ; Myoung-Suk Choi ; Soo-Hwan Yeo…
  • 关键词:wheat ; nuruk ; bacterial diversity ; Firmicutes ; LAB
  • 刊名:Journal of Microbiology
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:53
  • 期:12
  • 页码:812-819
  • 全文大小:771 KB
  • 参考文献:Amann, R.I., Ludwig, W., and Schleifer, K.H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143-69.PubMedCentral PubMed
    Ampe, F., Ben Omar, N., Moizan, C., Wacher, C., and Guyot, J.P. 1999. Polyphasic study of the spatial distribution of microorganisms in Mexican pozol, a fermented maize dough, demonstrates the need for cultivation-independent methods to investigate traditional fermentations. Appl. Environ. Microbiol. 65, 5464-473.PubMedCentral PubMed
    Arunachalam, R., Wesley, E.G., George, J., and Annadurai, G. 2010. Novel approaches for identification of streptomycesnobortoensis TBGH-V20 with cellulase production. Curr. Res. Bacteriol. 3, 15-6.CrossRef
    Bal, J., Yun, S.H., Song, H.Y., Yeo, S.H., Kim, J.H., Kim, J.M., and Kim, D.H. 2014. Mycoflora dynamics analysis of Korean traditional wheat-based nuruk. J. Microbiol. 52, 1025-029.CrossRef PubMed
    Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Pena, A.G., Goodrich, J.K., Gordon, J.I., et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335-36.PubMedCentral CrossRef PubMed
    Costello, E.K., Lauber, C.L., Hamady, M., Fierer, N., Gordon, J.I., and Knight, R. 2009. Bacterial community variation in human body habitats across space and time. Science 326, 1694-697.PubMedCentral CrossRef PubMed
    DeSantis, T.Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K., Huber, T., Dalevi, D., Hu, P., and Andersen, G.L. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069-072.PubMedCentral CrossRef PubMed
    Edgar, R.C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460-461.CrossRef PubMed
    Ercolini, D., Pontonio, E., De Filippis, F., Minervini, F., La Storia, A., Gobbetti, M., and Di Cagno, R. 2013. Microbial ecology dynamics during rye and wheat sourdough preparation. Appl. Environ. Microbiol. 79, 7827-836.PubMedCentral CrossRef PubMed
    Gantar, M., Kerby, N.W., Rowell, P., and Obreht, Z. 1991. Colonization of wheat (Triticum vulgare L.) by N2-fixing Cyanobacteria: I. A survey of soil Cyanobacterial isolates forming associations with roots. New Phytol. 118, 477-83.
    Golebiewski, M., Deja-Sikora, E., Cichosz, M., Tretyn, A., and Wrobel, B. 2014. 16S rDNA pyrosequencing analysis of bacterial community in heavy metals polluted soils. Microb. Ecol. 67, 635-47.PubMedCentral CrossRef PubMed
    Jang, H.D. and Chen, K.S. 2003. Production and characterization of thermostable cellulases from Streptomyces transformant T3-. World J. Microbiol. Biotechnol. 19, 263-68.CrossRef
    Jin, J., Kim, S.Y., Jin, Q., Eom, H.J., and Han, N.S. 2008. Diversity analysis of lactic acid bacteria in takju, Korean rice wine. J. Microbiol. Biotechnol. 18, 1678-682.PubMed
    Jung, M.J., Nam, Y.D., Roh, S.W., and Bae, J.W. 2012. Unexpected convergence of fungal and bacterial communities during fermentation of traditional Korean alcoholic beverages inoculated with various natural starters. Food Microbiol. 30, 112-23.CrossRef PubMed
    Kwon, S.J. and Sohn, J.H. 2012. Analysis of microbial diversity in Nuruk using PCR-DGGE. J. Life Sci. 22, 110-16.CrossRef
    Lee, J.S., Heo, G.Y., Lee, J.W., Oh, Y.J., Park, J.A., Park, Y.H., Pyun, Y.R., and Ahn, J.S. 2005. Analysis of kimchi microflora using denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 102, 143-50.CrossRef PubMed
    Li, X.R., Ma, E.B., Yan, L.Z., Han Meng, H., Du, X.W., and Quan, Z.X. 2013. Bacterial and fungal diversity in the starter production process of Fen liquor, a traditional chinese liquor. J. Microbiol. 51, 430-38.CrossRef PubMed
    McDonald, D., Price, M.N., Goodrich, J., Nawrocki, E.P., DeSantis, T.Z., Probst, A., Andersen, G.L., Knight, R., and Hugenholtz, P. 2012. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610-18.PubMedCentral CrossRef PubMed
    Ponnusamy, K., Lee, S., and Lee, C.H. 2013. Time-dependent correlation of the microbial community and the metabolomics of traditional barley nuruk starter fermentation. Biosci. Biotechnol. Biochem. 77, 683-90.CrossRef PubMed
    Rhee, S.J., Lee, J.E., and Lee, C.H. 2011. Importance of lactic acid bacteria in Asian fermented foods. Microb. Cell Fact. 10, S5.PubMedCentral CrossRef PubMed
    Roh, S.W., Kim, K.H., Nam, Y.D., Chang, H.W., Park, E.J., and Bae, J.W. 2010. Investigation of archaeal and bacterial diversity in fermented seafood using barcoded pyrosequencing. ISME J. 4, 1-6.CrossRef PubMed
    Song, S.H., Lee, C., Lee, S., Park, J.M., Lee, H.J., Bai, D.H., Yoon, S.S., Choi, J.B., and Park, Y.S. 2013. Analysis of microflora profile in Korean traditional nuruk. J. Microbiol. Biotechnol. 23, 40-6.CrossRef PubMed <
  • 作者单位:Jyotiranjan Bal (1)
    Suk-Hyun Yun (1)
    Myoung-Suk Choi (1)
    Soo-Hwan Yeo (2)
    Jung-Mi Kim (3)
    Dae-Hyuk Kim (1)

    1. Department of Molecular Biology, Department of Bioactive Material Sciences, Center for Fungal Pathogenesis, Chonbuk National University, Jeonju, 561-756, Republic of Korea
    2. Fermented Food Science Division, Department of Agrofood Resource, NAAS, RDA, Wanju-gun, 565-851, Republic of Korea
    3. Department of Bio-Environmental Chemistry, Wonkwang University, Iksan, 570-749, Republic of Korea
  • 刊物主题:Microbiology;
  • 出版者:Springer Netherlands
  • ISSN:1976-3794
文摘
The emerging global importance of Korea’s alcoholic beverages emphasizes the need for quality enhancement of nuruk, a traditional Korean cereal starter that is used extensively in traditional brewing. Apart from fungi and yeasts, bacteria known to be ubiquitously present are also a part of the nuruk ecosystem and are known to influence fermentation activity by influencing fermentation favorable factors. In the current study, bacterial diversity and temporal variations in the traditional wheat-based nuruk, fermented at two representative temperature conditions for 30 days, along with two commercial wheat-based nuruk samples for comparison analysis were evaluated using libraries of PCR amplicons and 454 pyrosequencing targeting of the hypervariable regions V1 to V3 of the 16S rRNA gene. A total of 90,836 16S reads were analyzed and assigned to a total of 314, 321, and 141 Operational Taxonomic Units (OTUs) for nuruk A, B, and C, respectively. Diversity parameters clearly indicated nuruk B to be more diverse in terms of bacterial composition than nuruk A. Taxonomic assignments indicated that nuruk A was dominated by phylum Cyanobacteria, whereas nuruk B was dominated by phylum Actinobacteria. For both nuruk A and B, members of the phylum Firmicutes mostly converged into the family Bacillaceae; these microorganisms might be present in negligible numbers at the beginning but became significant as the fermentation progressed. The commercial samples were predominated by phylum Firmicutes, which is composed of Lactobacillaceae and Leoconostocaceae. The findings of this study provide new insights into understanding the changes in bacterial community structure during traditional nuruk starter production. Keywords wheat nuruk bacterial diversity Firmicutes LAB

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700