用户名: 密码: 验证码:
Comparisons of thermal conductive behaviors of epoxy resin in unidirectional composite materials
详细信息    查看全文
  • 作者:Kai Dong ; Bohong Gu ; Baozhong Sun
  • 关键词:Thermal conductive behaviors ; Temperature distribution ; Unidirectional (UD) lamina ; Finite element method (FEM)
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:124
  • 期:2
  • 页码:775-789
  • 全文大小:3,599 KB
  • 参考文献:1.Jeon J, Muliana A, La Saponara V. Thermal stress and deformation analyses in fiber reinforced polymer composites undergoing heat conduction and mechanical loading. Compos Struct. 2014;111:31–44.CrossRef
    2.Aboudi J. The temperature field induced by the dynamic stresses of a transverse crack in periodically layered composites. Int J Eng Sci. 2011;49(8):732–54.CrossRef
    3.Deierling PE, Zhupanska OI. Experimental study of high electric current effects in carbon/epoxy composites. Compos Sci Technol. 2011;71(14):1659–64.CrossRef
    4.Ogasawara T, Hirano Y, Yoshimura A. Coupled thermal–electrical analysis for carbon fiber/epoxy composites exposed to simulated lightning current. Compos A Appl Sci Manuf. 2010;41(8):973–81.CrossRef
    5.Ning Q-G, Chou T-W. Closed-form solutions of the in-plane effective thermal conductivities of woven-fabric composites. Compos Sci Technol. 1995;55(1):41–8.CrossRef
    6.Ning Q-G, Chou T-W. A general analytical model for predicting the transverse effective thermal conductivities of woven fabric composites. Compos A Appl Sci Manuf. 1998;29(3):315–22.CrossRef
    7.Dasgupta A, Agarwal R, Bhandarkar S. Three-dimensional modeling of woven-fabric composites for effective thermo-mechanical and thermal properties. Compos Sci Technol. 1996;56(3):209–23.CrossRef
    8.Xu Y, Yagi K. Automatic FEM model generation for evaluating thermal conductivity of composite with random materials arrangement. Comput Mater Sci. 2004;30(3–4):242–50.CrossRef
    9.Gustavsson M, Karawacki E, Gustafsson SE. Thermal conductivity, thermal diffusivity, and specific heat of thin samples from transient measurements with hot disk sensors. Rev Sci Instrum. 1994;65(12):3856.CrossRef
    10.Leclerc W, Ferguen N, Pélegris C, Bellenger E, Guessasma M, Haddad H. An efficient numerical model for investigating the effects of anisotropy on the effective thermal conductivity of alumina/Al composites. Adv Eng Softw. 2014;77:1–12.CrossRef
    11.Pilling M, Yates B, Black M, Tattersall P. The thermal conductivity of carbon fibre-reinforced composites. J Mater Sci. 1979;14(6):1326–38.CrossRef
    12.Wang M, Kang Q, Pan N. Thermal conductivity enhancement of carbon fiber composites. Appl Therm Eng. 2009;29(2–3):418–21.CrossRef
    13.Villière M, Lecointe D, Sobotka V, Boyard N, Delaunay D. Experimental determination and modeling of thermal conductivity tensor of carbon/epoxy composite. Compos A Appl Sci Manuf. 2013;46:60–8.CrossRef
    14.Gori F, Corasaniti S. Effective thermal conductivity of composites. Int J Heat Mass Transf. 2014;77:653–61.CrossRef
    15.Yu JH, Chestakov DA, Eggink HJ. In-situ analysis of thermal properties of polymer composites by embedded LED temperature sensor. Microelectron J. 2013;44(11):1025–8.CrossRef
    16.Yu JH, Cennini G. Improving thermal conductivity of polymer composites in embedded LEDs systems. Microelectron J. 2014;45(12):1829–33.CrossRef
    17.Wang H-D, Liu J-H, Zhang X, Song Y. Raman measurements of optical absorption and heat transfer coefficients of a single carbon fiber in atmosphere environment. Int J Heat Mass Transf. 2014;70:40–5.CrossRef
    18.Furuse M, Fuchino S. Analysis and measurement of thermal conductivity of polypropylene laminated paper impregnated with subcooled liquid nitrogen. Cryogenics. 2014;63:125–8.CrossRef
    19.Alam MK. Thermal transport in graphitic carbon foams. J Compos Mater. 2004;38(22):1993–2006.CrossRef
    20.ASTM. Test method for steady state heat flux measurements and thermal transmission properties by means of the heat flow meter apparatus. ASTM. 1985.
    21.Scott EP, Beck JV. Estimation of thermal properties in epoxy matrix/carbon fiber composite materials. J Compos Mater. 1992;26(1):132–49.CrossRef
    22.Demain A, Issi J-P. The effect of fiber concentration on the thermal conductivity of a polycarbonate/pitch-based carbon fiber composite. J Compos Mater. 1993;27(7):668–83.CrossRef
    23.Progelhof R, Throne J, Ruetsch R. Methods for predicting the thermal conductivity of composite systems: a review. Polym Eng Sci. 1976;16(9):615–25.CrossRef
    24.Charles JA, Wilson DW. A model of passive thermal nondestructive evaluation of composite laminates. Polym Compos. 1981;2(3):105–11.CrossRef
    25.Jakubinek MB, Whitman CA, White MA. Negative thermal expansion materials. J Therm Anal Calorim. 2009;99(1):165–72.CrossRef
    26.Zhao B. Numerical simulation for the temperature changing rule of the crude oil in a storage tank based on the wavelet finite element method. J Therm Anal Calorim. 2011;107(1):387–93.CrossRef
    27.Răduca M, Haţiegan C, Pop N, Răduca E, Gillich G-R. Finite element analysis of heat transfer in transformers from high voltage stations. J Therm Anal Calorim. 2014;118(2):1355–60.CrossRef
    28.Hasselman DPH, Donaldson KY, Thomas JR. Effective thermal conductivity of uniaxial composite with cylindrically orthotropic carbon fibers and interfacial thermal barrier. J Compos Mater. 1993;27(6):637–44.CrossRef
  • 作者单位:Kai Dong (1)
    Bohong Gu (1)
    Baozhong Sun (1)

    1. College of Textiles, Key Laboratory of High Performance Fibers & Products, Ministry of Education, Donghua University, Shanghai, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Sciences
    Polymer Sciences
    Physical Chemistry
    Inorganic Chemistry
    Measurement Science and Instrumentation
  • 出版者:Akad茅miai Kiad贸, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic
  • ISSN:1572-8943
文摘
This paper reports thermal conductive behaviors of three kinds of materials, i.e., epoxy resin bar, carbon fiber bundles/epoxy system, and unidirectional carbon fiber/epoxy lamina along 0° and 90° directions. The apparatus for thermal conduction measurement was manufactured and calibrated with an aluminum bar with known thermal conductivity. The thermal conductive behaviors, including the thermal conductive rate and thermal equilibrium time, were tested and numerically simulated with finite element method. It is found that these materials have similar thermal conductive characteristics with same trends of temperature–time curves and thermal gradient–time curves. In addition, with the increase in fiber volume content or decrease in fiber orientation angle, the thermal conductive rate will be speeded up and thermal equilibrium time will be reduced. The temperature of epoxy resin in composite will increase with the increment of fiber volume content. Due to the existence of interface between fiber and resin, the overall thermal conductive ability of composite will be weakened. Owing to the epoxy resin, carbon fiber bundles/epoxy system and unidirectional carbon fiber/epoxy lamina are the basic materials for the laminates or complex preform reinforced composites, and the thermal conductive behaviors of these basic materials could be extended to design the thermal conductive behaviors of laminates and complex reinforcement composite materials.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700