用户名: 密码: 验证码:
Host-symbiont co-speciation and reductive genome evolution in gut symbiotic bacteria of acanthosomatid stinkbugs
详细信息    查看全文
  • 作者:Yoshitomo Kikuchi (1)
    Takahiro Hosokawa (1)
    Naruo Nikoh (2)
    Xian-Ying Meng (1)
    Yoichi Kamagata (3)
    Takema Fukatsu (1)
  • 刊名:BMC Biology
  • 出版年:2009
  • 出版时间:December 2009
  • 年:2009
  • 卷:7
  • 期:1
  • 全文大小:3285KB
  • 参考文献:1. Grimaldi DA, Engel MS: / Evolution of the Insects Cambridge University Press 2005.
    2. Buchner P: / Endosymbiosis of animals with plant microorganisms New York, NY: Interscience 1965.
    3. Baumann P: Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. / Annu Rev Microbiol 2005, 59:155-89. CrossRef
    4. Bourtzis K, Miller TA: / Insect symbiosis Boca Raton, FL: CRC Press 2003. CrossRef
    5. Bourtzis K, Miller TA: / Insect symbiosis II Boca Raton, F L: CRC Press 2006.
    6. Akman L, Yamashita A, Watanabe H, Oshima K, Shiba T, Hattori M, Aksoy S: Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia . / Nat Genet 2002, 32:402-07. CrossRef
    7. Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H: Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. / Nature 2000, 407:81-6. CrossRef
    8. Douglas AE: Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera . / Annu Rev Entomol 1998, 43:17-7. CrossRef
    9. Braendle C, Miura T, Bickel R, Shingleton AW, Kambhampati S, Stern DL: Developmental origin and evolution of bacteriocytes in the aphid- Buchnera symbiosis. / PLoS Biol 2003, 1:e21. CrossRef
    10. Chen X, Li S, Aksoy S: Concordant evolution of a symbiont with its host insect species: molecular phylogeny of genus Glossina and its bacteriome-associated endosymbiont, Wigglesworthia glossinidia . / J Mol Evol 1999, 48:49-8. CrossRef
    11. Clark MA, Moran NA, Baumann P, Wernegreen JJ: Cospeciation between bacterial endosymbionts ( Buchnera ) and a recent radiation of aphids (Uroleucon) and pitfalls of testing for phylogenetic congruence. / Evolution 2000, 54:517-25.
    12. Mira A, Moran NA: Estimating population size and transmission bottlenecks in maternally transmitted endosymbiotic bacteria. / Microb Ecol 2002, 44:137-43. CrossRef
    13. Wernegreen JJ: Genome evolution in bacterial endosymbionts of insects. / Nat Rev Genet 2002, 3:850-61. CrossRef
    14. Ohkuma M: Termite symbiotic systems: efficient bio-recycling of lignocellulose. / Appl Microbiol Biotechnol 2003, 61:1-.
    15. Breznak JA, Brune A: Role of microorganisms in the digestion of lignocellulose by termites. / Annu Rev Entomol 1994, 39:453-87. CrossRef
    16. Müller HJ: Experimentelle Studien an der Symbiose von Coptosoma scutellatum Geoffr (Hem. Heteropt.). / Z Morph ?kol Tiere 1956, 44:459-82. CrossRef
    17. Schorr H: Zur Verhaltensbiologie und Symbiose von Brachypelta aterrima F?rst (Cydnidae, Heteroptera). / Z Morph ?kol Tiere 1957, 45:561-02. CrossRef
    18. Huber-Schneider L: Morphologische und phyaiologische Untersuchungen an der Wanze Mesocerus marginatus L. und ihren Symbionten (Heteroptera). / Z Morph ?kol Tiere 1957, 46:433-80. CrossRef
    19. Hosokawa T, Kikuchi Y, Nikoh N, Shimada M, Fukatsu T: Strict host-symbiont cospeciation and reductive genome evolution in insect gut bacteria. / PLoS Biol 2006, 4:e337. CrossRef
    20. Kikuchi Y, Hosokawa T, Fukatsu T: Insect-microbe mutualism without vertical transmission: a stinkbug acquires beneficial gut symbiont from environment every generation. / Appl Environ Microbiol 2007, 73:4308-316. CrossRef
    21. Abe Y, Mishiro K, Takanashi M: Symbiont of brown-winged green bug, Plautia stali Scott. / Jpn J Appl Entomol Zool 1995, 39:109-15.
    22. Prado SS, Rubinoff D, Almeida RPP: Vertical transmission of a pentatomid caeca-associated symbiont. / Ann Entomol Soc Am 2006, 99:577-85. CrossRef
    23. Dasch GA, Weiss E, Chang KP: Endosymbionts of insects. / Bergey's Manual of Systematic Bacteriology / (Edited by: Krieg NR, Holt JG). Baltimore, MD: Williams & Wilkins 1984., 1:
    24. Hosokawa T, Kikuchi Y, Meng XY, Fukatsu T: The making of symbiont capsule in the plataspid stinkbug Megacopta punctatissima . / FEMS Microbiol Ecol 2005, 54:471-77. CrossRef
    25. Fukatsu T, Hosokawa T: Capsule-transmitted gut symbiotic bacterium of the Japanese common plataspid stinkbug, Megacopta punctatissima . / Appl Environ Microbiol 2002, 68:389-96. CrossRef
    26. Schuh RT, Slater JA: / True bugs of the world (Hemiptera: Heteroptera) New York, NY: Cornell University Press 1995.
    27. Costa JT: / The other insect societies Cambridge, MA: Harvard University Press 2006.
    28. Rosenkranz W: Die Symbiose der Pentatomiden. / Z Morph ?kol Tiere 1939, 36:279-09. CrossRef
    29. Goodchild AJP: Studies on the functional anatomy of the intestines of Heteroptera. / Proc Zool Soc Lond 1963, 141:851-10.
    30. Page RDM: Parallel phylogenies: reconstructing the history of host-parasite assemblages. / Cladistics 1994, 10:155-73. CrossRef
    31. Ronquist F: Reconstructing the history of host-parasite associations using generalised parsimony. / Cladistics 1995, 11:73-9. CrossRef
    32. de Vienne DM, Giraud T, Martin OC: A congruence index for testing topological similarity between trees. / Bioinformatics 2007, 23:3119-124. CrossRef
    33. Glasgow H: The gastric caeca and the caecal bacteria of the Heteroptera. / Biol Bull 1914, 3:101-71. CrossRef
    34. Kikuchi Y, Meng XY, Fukatsu T: Gut symbiotic bacteria of the genus Burkholderia in the broad-headed bugs Riptortus clavatus and Leptocorisa chinensis (Heteroptera: Alydidae). / Appl Environ Microbiol 2005, 71:4035-043. CrossRef
    35. Yassin AF:Rhodococcus triatomae sp. nov., isolated from a blood-sucking bug. / Int J Syst Evol Microbiol 2005, 55:1575-579. CrossRef
    36. Lefevre C, Charles H, Vallier A, Delobel B, Farrell B, Heddi A: Endosymbiont phylogenesis in the Dryophthoridae weevils: Evidence for bacterial replacement. / Mol Biol Evol 2004, 21:965-73. CrossRef
    37. Sauer C, Stackebrandt E, Gadau J, Holldobler B, Gross R: Systematic relationships and cospeciation of bacterial endosymbionts and their carpenter ant host species: proposal of the new taxon Candidatus Blochmannia gen. nov. / Int J Syst Evol Microbiol 2000, 50:1877-886.
    38. Takiya DM, Tran PL, Dietrich CH, Moran NA: Co-cladogenesis spanning three phyla: leafhoppers (Insecta: Hemiptera: Cicadellidae) and their dual bacterial symbionts. / Mol Ecol 2006, 15:4175-191. CrossRef
    39. Thao ML, Moran NA, Abbot P, Brennan EB, Burckhardt DH, Baumann P: Cospeciation of psyllids and their primary prokaryotic endosymbionts. / Appl Environ Microbiol 2000, 66:2898-905. CrossRef
    40. Thao ML, Baumann P: Evolutionary relationships of primary prokaryotic endosymbionts of whiteflies and their hosts. / Appl Environ Microbiol 2004, 70:3401-406. CrossRef
    41. Hongoh Y, Deevong P, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, Vongkaluang C, Noparatnaraporn N, Kudo T: Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. / Appl Environ Microbiol 2005, 71:6590-599. CrossRef
    42. Donovan SE, Purdy KJ, Kane MD, Eggleton P: Comparison of Euryarchaea strains in the guts and food-soil of the soil-feeding termite Cubitermes fungifaber across different soil types. / Appl Environ Microbiol 2004, 70:3884-892. CrossRef
    43. Schneider G: Beitr?ge zur Kenntnis der symbiontischen Einrichtungen der Heteropteren. / Z Morph ?kol Tiere 1940., 36:
    44. Tomokuni M, Yasunaga T, Takai M, Yamashita I, Kawamura M, Kawasawa T: A Field Guide to Japanese Bugs. Tokyo, Japan: Zenkoku Noson Kyoiku Kyoukai 1993.
    45. Kudo S: Brooding behavior in Elasmucha putoni (Heteroptera: Acanthosomatidae), and a possible nymphal alarm substance triggering guarding responses. / Appl Entomol Zool 1990, 25:431-37.
    46. Kudo S, Sato M, Ohara M: Prolonged maternal care in Elasmucha dorsalis (Heteroptera: Acanthosomatidae). / J Ethol 1989, 7:75-1. CrossRef
    47. Wu D, Daugherty SC, Van Aken SE, Pai GH, Watkins KL, Khouri H, Tallon LJ, Zaborsky JM, Dunbar HE, Tran PL, Moran NA, Eisen JA: Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters. / PLoS Biol 2006, 4:e188. CrossRef
    48. Gil R, Silva FJ, Zientz E, Delmotte F, Gonzalez-Candelas F, Latorre A, Rausell C, Kamerbeek J, Gadau J, Holldobler B, van Ham RC, Gross R, Moya A: The genome sequence of Blochmannia floridanus : comparative analysis of reduced genomes. / Proc Natl Acad Sci USA 2003, 100:9388-393. CrossRef
    49. Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar HE, Moran NA, Hattori M: The 160-kilobase genome of the bacterial endosymbiont Carsonella . / Science 2006, 314:267. CrossRef
    50. Pérez-Brocal V, Gil R, Ramos S, Lamelas A, Postigo M, Michelena JM, Silva FJ, Moya A, Latorre A: A small microbial genome: the end of a long symbiotic relationship? / Science 2006, 314:312-13. CrossRef
    51. Moya A, Peretó J, Gil R, Latorre A: Learning how to live together: genomic insights into prokaryote-animal symbioses. / Nat Rev Genet 2008, 9:218-29. CrossRef
    52. Blanc G, Ogata H, Robert C, Audic S, Suhre K, Vestris G, Claverie JM, Raoult D: Reductive genome evolution from the mother of Rickettsia . / PLoS Genet 2007, 3:e14. CrossRef
    53. Wernegreen JJ: Endosymbiosis: lessons in conflict resolution. / PLoS Biol 2004, 2:e68. CrossRef
    54. Moran NA: Microbial minimalism: genome reduction in bacterial pathogens. / Cell 2002, 108:583-86. CrossRef
    55. Fukatsu T: Acetone preservation: a practical technique for molecular analysis. / Mol Ecol 1999, 8:1935-945. CrossRef
    56. Fukatsu T, Nikoh N: Two intracellular symbiotic bacteria from the mulberry psyllid Anomoneura mori (Insecta, Homoptera). / Appl Environ Microbiol 1998, 64:3599-606.
    57. Hosokawa T, Kikuchi Y, Fukatsu T: How many symbionts are provided by mothers, acquired by offspring, and needed for successful vertical transmission in an obligate insect-bacterium mutualism? / Mol Ecol 2007, 16:5316-325. CrossRef
    58. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R: DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. / Mol Mar Biol Biotechnol 1994, 3:294-99.
    59. Sakurai M, Koga R, Tsuchida T, Meng XY, Fukatsu T:Rickettsia symbiont in the pea aphid Acyrthosiphon pisum : novel cellular tropism, effect on host fitness, and interaction with the essential symbiont Buchnera . / Appl Environ Microbiol 2005, 71:4069-075. CrossRef
    60. Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. / Nucleic Acids Res 1994, 22:4673-680. CrossRef
    61. Swofford DL: PAUP* Version 4.0b10 [computer program]. / 4.0b10 edition Sinauer, Sunderland, MA 2001.
    62. Posada D, Crandall KA: Modeltest: Testing the model of DNA substitution. / Bioinformatics 1998, 14:817-18. CrossRef
    63. Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. / Bioinformatics 2003, 19:1572-574. CrossRef
    64. Nylander JA: MrModeltest v2.1 [computer program]. [http://www.ebc.uu.se/systzoo/staff/nylander.html] 2004.
    65. Charleston MA, Page RDM: TreeMap v2.02b [computer program]. [http://www.it.usyd.edu.au/~mcharles/] 2002.
    66. Schmidt HA, Strimmer K, Vingron M, von Haeseler A: TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. / Bioinformatics 2002, 18:502-04. CrossRef
    67. Sneath PHA, Sokal RQ: / Numerical taxonomy: The principles and practice of numerical classification San Francisco, CA: Freeman 1973.
    68. Adachi J, Hasegawa M: Amino acid substitution of proteins coded for in mitochondrial DNA during mammalian evolution. / Jpn J Genet 1992, 67:187-97. CrossRef
    69. R Development Core Team: R: A language and environment for statistical computing. [http://www.R-project.org] / Vienna, Austria: ISBN 3-00051-7- 2007.
  • 作者单位:Yoshitomo Kikuchi (1)
    Takahiro Hosokawa (1)
    Naruo Nikoh (2)
    Xian-Ying Meng (1)
    Yoichi Kamagata (3)
    Takema Fukatsu (1)

    1. Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), 305-8566, Tsukuba, Japan
    2. Division of Natural Sciences, The Open University of Japan, 261-8586, Chiba, Japan
    3. Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science and Technology (AIST), 305-8566, Tsukuba, Japan
文摘
Background Host-symbiont co-speciation and reductive genome evolution have been commonly observed among obligate endocellular insect symbionts, while such examples have rarely been identified among extracellular ones, the only case reported being from gut symbiotic bacteria of stinkbugs of the family Plataspidae. Considering that gut symbiotic communities are vulnerable to invasion of foreign microbes, gut symbiotic associations have been thought to be evolutionarily not stable. Stinkbugs of the family Acanthosomatidae harbor a bacterial symbiont in the midgut crypts, the lumen of which is completely sealed off from the midgut main tract, thereby retaining the symbiont in the isolated cryptic cavities. We investigated histological, ecological, phylogenetic, and genomic aspects of the unique gut symbiosis of the acanthosomatid stinkbugs. Results Phylogenetic analyses showed that the acanthosomatid symbionts constitute a distinct clade in the γ-Proteobacteria, whose sister groups are the obligate endocellular symbionts of aphids Buchnera and the obligate gut symbionts of plataspid stinkbugs Ishikawaella. In addition to the midgut crypts, the symbionts were located in a pair of peculiar lubricating organs associated with the female ovipositor, by which the symbionts are vertically transmitted via egg surface contamination. The symbionts were detected not from ovaries but from deposited eggs, and surface sterilization of eggs resulted in symbiont-free hatchlings. The symbiont-free insects suffered retarded growth, high mortality, and abnormal morphology, suggesting important biological roles of the symbiont for the host insects. The symbiont phylogeny was generally concordant with the host phylogeny, indicating host-symbiont co-speciation over evolutionary time despite the extracellular association. Meanwhile, some local host-symbiont phylogenetic discrepancies were found, suggesting occasional horizontal symbiont transfers across the host lineages. The symbionts exhibited AT-biased nucleotide composition, accelerated molecular evolution, and reduced genome size, as has been observed in obligate endocellular insect symbionts. Conclusion Comprehensive studies of the acanthosomatid bacterial symbiosis provide new insights into the genomic evolution of extracellular symbiotic bacteria: host-symbiont co-speciation and drastic genome reduction can occur not only in endocellular symbiotic associations but also in extracellular ones. We suggest that many more such cases might be discovered in future surveys.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700