用户名: 密码: 验证码:
Topographic Influence on Plant Nitrogen and Phosphorus Stoichiometry in a Temperate Forested Watershed
详细信息    查看全文
  • 作者:Masaaki Chiwa ; Shoko Ikezaki ; Ayumi Katayama ; Tsutomu Enoki
  • 关键词:P limitation ; N saturation ; Topography ; Atmospheric N deposition ; Stoichiometry ; Serpentine bedrock
  • 刊名:Water, Air, and Soil Pollution
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:227
  • 期:1
  • 全文大小:1,220 KB
  • 参考文献:Aber, J. D., Nadelhoffer, K. J., Steudler, P., & Melillo, J. M. (1989). Nitrogen saturation in northern forest ecosystems. Bioscience, 39, 378鈥?86.CrossRef
    Aber, J. D., Goodale, C. L., Ollinger, S. V., Smith, M. L., Magill, A. H., Martin, M. E., Hallett, R. A., & Stoddard, J. L. (2003). Is nitrogen deposition altering the nitrogen status of northeastern forests? Bioscience, 53, 375鈥?89.CrossRef
    Blanes, M. C., Vinegla, B., Merino, J., & Carreira, J. A. (2013). Nutritional status of Abies pinsapo forests along a nitrogen deposition gradient: do C/N/P stoichiometric shifts modify photosynthetic nutrient use efficiency? Oecologia, 171, 797鈥?08.CrossRef
    Bragazza, L., Tahvanainen, T., Kutnar, L., Rydin, H., Limpens, J., Hajek, M., Grosvernier, P., Hajek, T., Hajkova, P., Hansen, I., Iacumin, P., & Gerdol, R. (2004). Nutritional constraints in ombrotrophic Sphagnum plants under increasing atmospheric nitrogen deposition in Europe. New Phytologist, 163, 609鈥?16.CrossRef
    Braun, S., Thomas, V. F. D., Quiring, R., & Fluckiger, W. (2010). Does nitrogen deposition increase forest production? The role of phosphorus. Environmental Pollution, 158, 2043鈥?052.CrossRef
    Brubaker, S. C., Jones, A. J., Lewis, D. T., & Frank, K. (1993). Soil properties associated with landscape position. Soil Science Society of America Journal, 57, 235鈥?39.CrossRef
    Casson, N. J., Eimers, M. C., & Watmough, S. A. (2012). An assessment of the nutrient status of sugar maple in Ontario: indications of phosphorus limitation. Environmental Monitoring and Assessment, 184, 5917鈥?927.CrossRef
    Chiwa, M., Maruno, R., Ide, J., Miyano, T., Higashi, N., & Otsuki, K. (2010). Role of stormflow in reducing N retention in a suburban forested watershed, western Japan. Journal of Geophysical Research-Biogeosciences, 115, G02004.CrossRef
    Chiwa, M., Onikura, N., Ide, J., & Kume, A. (2012). Impact of N-saturated upland forests on downstream N pollution in the Tatara River Basin, Japan. Ecosystems, 15, 230鈥?41.CrossRef
    Dise, N. B., & Wright, R. F. (1995). Nitrogen leaching from European forests in relation to nitrogen deposition. Forest Ecology and Management, 71, 153鈥?61.CrossRef
    Enoki, T., & Kawaguchi, H. (1999). Nitrogen resorption from needles of Pinus thunbergii Parl. growing along a topographic gradient of soil nutrient availability. Ecological Research, 14, 1鈥?.CrossRef
    Enoki, T., Kawaguchi, H., & Iwatsubo, G. (1996). Topographic variations of soil properties and stand structure in a Pinus thunbergii plantation. Ecological Research, 11, 299鈥?09.CrossRef
    Enoki, T., Kawaguchi, H., & Iwatsubo, G. (1997). Nutrient-uptake and nutrient-use efficiency of Pinus thunbergii Parl. along a topographical gradient of soil nutrient availability. Ecological Research, 12, 191鈥?99.CrossRef
    Fenn, M. E., Poth, M. A., Aber, J. D., Baron, J. S., Bormann, B. T., Johnson, D. W., Lemly, A. D., McNulty, S. G., Ryan, D. E., & Stottlemyer, R. (1998). Nitrogen excess in North American ecosystems: Predisposing factors, ecosystem responses, and management strategies. Ecological Applications, 8, 706鈥?33.CrossRef
    Galloway, J. N. (2005). The global nitrogen cycle. In W. H. Schlesinger (Ed.), Biogeochemistry (Treatise on geochemistry, Vol. 8, pp. 557鈥?83). Oxford: Elsevier.
    Gradowski, T., & Thomas, S. C. (2006). Phosphorus limitation of sugar maple growth in central Ontario. Forest Ecology Management, 226, 104鈥?09.CrossRef
    Gress, S. E., Nichols, T. D., Northcraft, C. C., & Peterjohn, W. T. (2007). Nutrient limitation in soils exhibiting differing nitrogen availabilities: what lies beyond nitrogen saturation? Ecology, 88, 119鈥?30.CrossRef
    Gundersen, P., Schmidt, I. K., & Raulund-Rasmussen, K. (2006). Leaching of nitrate from temperate forests - effects of air pollution and forest management. Environmental Review, 14, 1鈥?7.CrossRef
    Gusewell, S. (2004). N : P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164, 243鈥?66.CrossRef
    Gusewell, S., & Koerselman, M. (2002). Variation in nitrogen and phosphorus concentrations of wetland plants. Perspectives in Plant Ecology Evolution and Systematics, 5, 37鈥?1.CrossRef
    Kayama, M., Makoto, K., Nomura, M., Satoh, F., & Koike, T. (2009). Nutrient dynamics and carbon partitioning in larch seedlings (Larix kaempferi) regenerated on serpentine soil in northern Japan. Landscape Ecological Engineering, 5, 125鈥?35.CrossRef
    Kitayama, K., Majalap-Lee, N., & Aiba, S. (2000). Soil phosphorus fractionation and phosphorus-use efficiencies of tropical rainforests along altitudinal gradients of Mount Kinabalu, Borneo. Oecologia, 123, 342鈥?49.CrossRef
    Kobe, R. K., Lepczyk, C. A., & Iyer, M. (2005). Resorption efficiency decreases with increasing green leaf nutrients in a global data set. Ecology, 86, 2780鈥?792.
    Koerselman, W., & Meuleman, A. F. M. (1996). The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33, 1441鈥?450.CrossRef
    Lovett, G. M., Traynor, M. M., Pouyat, R. V., Carreiro, M. M., Zhu, W. X., & Baxter, J. W. (2000). Atmospheric deposition to oak forests along an urban鈥搑ural gradient. Environmental Science and Technology, 34, 4294鈥?300.CrossRef
    Mage, S., & Porder, S. (2013). Parent material and topography determine soil phosphorus Status in the Luquillo Mountains of Puerto Rico. Ecosystems, 16, 284鈥?94.CrossRef
    McGroddy, M. E., Daufresne, T., & Hedin, L. O. (2004). Scaling of C : N : P stoichiometry in forests worldwide: Implications of terrestrial redfield-type ratios. Ecology, 85, 2390鈥?401.CrossRef
    Ohrui, K., & Mitchell, M. J. (1997). Nitrogen saturation in Japanese forested watersheds. Ecological Applications, 7, 391鈥?01.CrossRef
    Richardson, S. J., Peltzer, D. A., Allen, R. B., & McGlone, M. S. (2005). Resorption proficiency along a chronosequence: Responses among communities and within species. Ecology, 86, 20鈥?5.
    Saito, H. (1982). Primary production over 10 years in evergreen coniferous (Chamaecyparis obtuse Sieb. et Zucc.) plantation in Mt. Watanuki-yama, Shiga. Japanese Journal of Ecology, 32, 87鈥?8 (in Japanese with English summary).
    Tanner, E. V. J., Vitousek, P. M., & Cuevas, E. (1998). Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology, 79, 10鈥?2.
    Tateno, R., & Takeda, H. (2010). Nitrogen uptake and nitrogen use efficiency above and below ground along a topographic gradient of soil nitrogen availability. Oecologia, 163, 793鈥?04.CrossRef
    Tessier, J. T., & Raynal, D. J. (2003). Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. Journal of Applied Ecology, 40, 523鈥?34.CrossRef
    Ueda, S., & Tsutsumi, T. (1979). The amount of nutrient in Chamaecyparis 鈥揑nfluences of fertilization and elements of litterfall obtusa stands and site condition鈥? Bulletin of the Kyoto University Forests, 51, 84鈥?5 (in Japanese with English summary).
    Vergutz, L., Manzoni, S., Porporato, A., Novais, R. F., & Jackson, R. B. (2012). Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecological Monographs, 82, 205鈥?20.
    Vitousek, P. (1982). Nutrient cycling and nutrient use efficiency. American Naturalist, 119, 553鈥?72.
    Vitousek, P. M., & Sanford, R. L. (1986). Nutrient cycling in moist tropical forest. Annual Review of Ecology and Systematics, 17, 137鈥?67.
    Vitousek, P. M., & Howarth, R. W. (1991). Nitrogen limitation on land and in the sea -How can it occur. Biogeochemistry, 13, 87鈥?15.CrossRef
    Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., Schlesinger, W. H., & Tilman, D. G. (1997). Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications, 7, 737鈥?50.
    Watanabe, M., Ryu, K., Kita, K., Takagi, K., & Koike, T. (2012). Effect of nitrogen load on growth and photosynthesis of seedlings of the hybrid larch F1 (Larix gmelinii var. japonica鈥壝椻€?em class="EmphasisTypeItalic ">L. kaempferi) grown on serpentine soil. Environmental and Experimental Botany, 83, 73鈥?1.CrossRef
    Yamakura, T., Kanzaki, M., Itoh, A., Ohkubo, T., Ogino, K., Chai, E. O. K., Lee, H. S., & Ahton, P. S. (1995). Topography of a large-scale research plot established within a tropical rain forest at Lambir, Sarawak. Tropics, 5, 41鈥?6.CrossRef
    Zhang, Z., Fukushima, T., Onda, Y., Mizugaki, S., Gomi, T., Kosugi, K., Hiramatsu, S., Kitahara, H., Kuraji, K., Terajima, T., Matsushige, K., & Tao, F. (2008). Characterisation of diffuse pollutions from forested watersheds in Japan during storm events - Its association with rainfall and watershed features. Science of the Total Environment, 390, 215鈥?26.CrossRef
  • 作者单位:Masaaki Chiwa (1)
    Shoko Ikezaki (1)
    Ayumi Katayama (1)
    Tsutomu Enoki (1)

    1. Kyushu University Forest, Kyushu University, 394 Tsubakuro, Sasaguri, 811-2415, Japan
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Atmospheric Protection, Air Quality Control and Air Pollution
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Terrestrial Pollution
    Hydrogeology
  • 出版者:Springer Netherlands
  • ISSN:1573-2932
文摘
Plant stoichiometry has been used to diagnose phosphorus (P) limitation caused by increased atmospheric nitrogen (N) deposition. Spatial variability of N/P stoichiometry within a forested watershed has not yet been evaluated. This study conducted synoptic sampling of leaf matter in 27 plots within a temperate forested watershed on low P availability rock (serpentine bedrock) with a moderately high atmospheric N deposition (16 kg N ha鈭? year鈭?) to assess the effects of spatial topographic variation on N/P stoichiometry. Leaf N and P concentrations and N/P ratios of Japanese cypress were assessed, and their spatial variations were evaluated across a catchment. Average leaf P concentration was low (0.66鈥壜扁€?.16 mg g鈭?) across the sites, while leaf N concentration was high (13.0鈥壜扁€?.5 mg g鈭?); subsequently, N/P ratios were high (21鈥壜扁€?). In addition, the aboveground biomass growth of Japanese cypress positively correlated with litter P, implying the P limitation of Japanese cypress at the study site. Leaf P concentrations responded to the index of convexity (IC) values more than those of N. Subsequently, the N/P ratio correlated with IC, suggesting that N/P ratios are susceptible to topographic features. This could be partly caused by smaller spatial variability of N availability compared with P, owing to increased atmospheric N deposition. Thus, topography should be taken into consideration when diagnosing P limitation caused by N deposition. Keywords P limitation N saturation Topography Atmospheric N deposition Stoichiometry Serpentine bedrock

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700