用户名: 密码: 验证码:
Determination of HOMO levels of organic dyes in solid-state electrochemistry
详细信息    查看全文
  • 作者:Chunhe Yang (1)
    Aiwei Tang (1)
    Feng Teng (2)
    Kejian Jiang (3)

    1. Department of Chemistry
    ; School of Science ; Beijing Jiaotong University ; Beijing ; China
    2. Institute of Optoelectronic Technology
    ; School of Science ; Beijing Jiaotong University ; Beijing ; China
    3. Laboratory of New Materials
    ; Institute of Chemistry ; Chinese Academy of Sciences ; Beijing ; China
  • 刊名:Journal of Solid State Electrochemistry
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:19
  • 期:3
  • 页码:883-890
  • 全文大小:1,990 KB
  • 参考文献:1. O鈥橰egan, B, Gratzel, M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353: pp. 737-740 CrossRef
    2. Gratzel, M (2007) Photovoltaic and photoelectrochemical conversion of solar energy. Phil Trans R Soc A 365: pp. 993-1005 CrossRef
    3. Hamann, TW, Jensen, RA, Martinson, ABF, Ryswykac, H, Hupp, JT (2008) Advancing beyond current generation dye-sensitized solar cells. Energ Environ Sci 1: pp. 66-78 CrossRef
    4. Calogero, G, Marco, G, Caramori, S, Cazzanti, S, Argazzi, R, Bignozzi, C (2009) Natural dye senstizers for photoelectrochemical cells. Energ Environ Sci 2: pp. 1162-1172 CrossRef
    5. Meyer, G (2010) The 2010 Millennium technology grand prize: dye-sensitized solar cells. ACS Nano 4: pp. 4337-4343 CrossRef
    6. Yum J, Chen P, Gratzel M, Nazeeruddin M (2008) Recent developments in solid-state dye-sensitized solar cells. ChemSusChem 1(8鈥?):699鈥?07
    7. Li, B, Wang, L, Kang, B, Wang, P, Qiu, Y (2006) Review of recent progress in solid-state dye-sensitized solar cells. Sol Energ Mater Sol Cell 90: pp. 549-573 CrossRef
    8. Filipic, M, Berginc, M, Smole, F, Topic, M (2012) Analysis of electron recombination in dye-sensitized solar cell. Curr App Phys 12: pp. 238-246 CrossRef
    9. Jennings, J, Liu, Y, Wang, Q, Zakeeruddin, S, Gratzel, M (2011) The influence of dye structure on charge recombination in dye-sensitized solar cells. Phys Chem Chem Phys 13: pp. 6637-6648 CrossRef
    10. Clifford, J, Martinez-Ferrero, E, Viterisi, A, Palomares, E (2011) Sensitizer molecular structure-device efficiency relationship in dye sensitized solar cells. Chem Soc Rev 40: pp. 1635-1646 CrossRef
    11. Listorti, A, O鈥橰egan, B, Durrant, J (2011) Electron transfer dynamics in dye-sensitized solar cells. Chem Mater 23: pp. 3381-3399 CrossRef
    12. Peter, L, Duffy, N, Wang, R, Wijayantha, K (2002) Transport and interfacial transfer of electrons in dye-sensitized nanocrystalline solar cells. J Electroanal Chem 524: pp. 127-136 CrossRef
    13. Gratzel, M (2003) Dye-sensitized solar cells. J Photochem Photobio C: Photochem Rev 4: pp. 145-153 CrossRef
    14. Mulhern, K, Detty, M, Watson, D (2011) Aggregation-induced increase of the quantum yield of electron injection from chalcogenorhodamine dyes to TiO2. J Phys Chem C 115: pp. 6010-6018 CrossRef
    15. Ehret, A, Stuhl, L, Spitler, MT (2001) Spectral sensitization of TiO2 nanocrystalline electrodes with aggregated cyanine dyes. J Phys Chem B 105: pp. 9960-9965 CrossRef
    16. Kawasaki, M, Aoyama, S (2004) High efficiency photocurrent generation by two-dimensional mixed J-aggregates of cyanine dyes. Chem Commun 21: pp. 988-989 CrossRef
    17. Khazraji, AC, Hotchandani, S, Das, S, Kamat, PV (1999) Controlling dye (Merocyanine-540) aggregation on nanostructured TiO2 Films. An organized assembly approach for enhancing the efficiency of photosensitization. J Phys Chem B 103: pp. 4693-4700 CrossRef
    18. Pastore, M, Angelis, F (2009) Aggregation of organic dyes on TiO2 in dye-sensitized solar cells models: an ab initio investigation. ACS Nano 4: pp. 556-562 CrossRef
    19. Sayama, K, Tsukagoshi, S, Hara, K, Ohga, Y, Shinpou, A, Abe, Y, Suga, S, Arakawa, H (2002) Photoelectrochemical properties of J aggregates of benzothiazole merocyanine dyes on a nanostructured TiO2 film. J Phys Chem B 106: pp. 1363-1371 CrossRef
    20. Choi, H, Lee, JK, Song, KH, Song, K, Kanga, SO, Koa, J (2007) Synthesis of new julolidine dyes having bithiophene derivatives for solar cell. Tetrahedron 63: pp. 1553-1559 CrossRef
    21. Hagberg, DP, Edvinsson, T, Marinado, T, Boschloo, G, Hagfeldt, A, Sun, L (2006) A novel organic chromophore for dye-sensitized nanostructured solar cells. Chem Commun 4: pp. 2245-2247 CrossRef
    22. Thomas, KRJ, Hsu, Y-C, Lin, JT, Lee, K-M, Ho, K-C, Lai, C-H, Cheng, Y-M, Chou, P-T (2008) 2,3-Disubstituted thiophene-based organic dyes for solar cells. Chem Mater 20: pp. 1830-1840 CrossRef
    23. Kuang, K, Klein, C, Ito, S, Moser, J-E, Humphry-Baker, R, Zakeeruddin, SM, Gr盲tzel, M (2007) High molar extinction coefficient ion-coordinating ruthenium sensitizer for efficient and stable mesoscopic dye-sensitized solar cells. Adv Funct Mater 17: pp. 154-160 CrossRef
    24. D鈥橝ndrade, BW, Datta, S, Forrest, SR, Djurovich, P, Polikarpov, E, Thompson, ME (2005) Relationship between the ionization and oxidation potentials of molecular organic semiconductors. Org Electron 6: pp. 11-20 CrossRef
    25. Bach, U, Lupo, D, Comte, P, Moser, JE, Weiss枚rtel, F, Salbeck, H, Spreitzer, J, Gr盲tzel, M (1998) Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395: pp. 583-585 CrossRef
    26. Hodes, G, Cahen, D (2012) All-solid-state, semiconductor-sensitized nanoporous solar cells. Acc Chem Res 45: pp. 705-713 CrossRef
    27. Bandara, J, Weerasinghe, H (2006) Design of high-efficiency solid-state dye-sensitized solar cells using coupled dye mixtures. So Energ Mater Sol Cell 90: pp. 864-871 CrossRef
    28. Cappel, U, Smeigh, A, Plogmaker, S, Johansson, E, Rensmo, H, Hammarstrom, L, Hagfeldt, A, Boschloo, G (2011) Characterization of the interface properties and processes in solid state dye-sensitized solar cells employing a perylene sensitizer. J Phys Chem C 115: pp. 4345-4358 CrossRef
    29. Cha, S, Lee, Y, Kang, M, Kang, Y (2010) Correlation between ionic conductivity and cell performance in solid-state dye-sensitized solar cells employing polymer electrolyte. J Photochem Photobio A: Chem 211: pp. 193-196 CrossRef
    30. Nogueira, V, Longo, C, Nogueira, A, Soto-Oviedo, M, Paoli, M (2006) Solid-state dye-sensitized solar cell: improved performance and stability using a plasticized polymer electrolyte. J Photochem Photobio A: Chem 181: pp. 226-232 CrossRef
    31. Liu, Q, Jiang, K, Guan, B, Tang, Z, Pei, J, Song, Y (2011) A novel bulk heterojunction solar cell based on a donor鈥揳cceptor conjugated triphenylamine dye. Chem Commun 47: pp. 740-742 CrossRef
    32. Shang, H, Luo, Y, Guo, X, Huang, X, Zhan, X, Jiang, K, Meng, Q (2010) The effect of anchoring group number on the performance of dye-sensitized solar cells. Dye Pig 87: pp. 249-256 CrossRef
    33. Yang, CH, He, GF, Wang, RQ, Li, YF (1999) Solid-state electrochemical investigation of poly [2-methoxy, 5-(2鈥?ethyl-hexyloxy)-1,4-phenylene vinylene]. J Electroanal Chem 471: pp. 32-36 CrossRef
    34. Frisch, MJ, Trucks, GW, Schlegel, HB, Scuseria, GE, Robb, MA, Cheeseman, JR, Scalmani, G, Barone, V, Mennucci, B, Petersson, GA, Nakatsuji, H, Caricato, M, Li, X, Hratchian, HP, Izmaylov, AF, Bloino, J, Zheng, G, Sonnenberg, JL, Hada, M, Ehara, M, Toyota, K, Fukuda, R, Hasegawa, J, Ishida, M, Nakajima, T, Honda, Y, Kitao, O, Nakai, H, Vreven, T, Montgomery, JA, Peralta, JE, Ogliaro, F, Bearpark, M, Heyd, JJ, Brothers, E, Kudin, KN, Staroverov, VN, Kobayashi, R, Normand, J, Raghavachari, K, Rendell, A, Burant, JC, Iyengar, SS, Tomasi, J, Cossi, M, Rega, N, Millam, JM, Klene, M, Knox, JE, Cross, JB, Bakken, V, Adamo, C, Jaramillo, J, Gomperts, RE, Stratmann, O, Yazyev, AJ, Austin, R, Cammi, C, Pomelli, JW, Ochterski, R, Martin, RL, Morokuma, K, Zakrzewski, VG, Voth, GA, Salvador, P, Dannenberg, JJ, Dapprich, S, Daniels, AD, Farkas, O, Foresman, JB, Ortiz, JV, Cioslowski, J, Fox, DJ (2009) Gaussian 09w, version 7.0. Gaussian, Inc, Wallingford
    35. Yang, C, Tang, A, Teng, F (2013) The solid-state electrochemistry of CdS and Cu (I)-doped CdS nanocrystals. J Electrochem Soc 160: pp. H121-H125 CrossRef
    36. Sonmez, G, Meng, H, Wudl, F (2004) Organic polymeric electrochromic devices: polychromism with very high coloration efficiency. Chem Mater 16: pp. 574-580 CrossRef
    37. Marchesi, LFQP, Simoes, FR, Pocrifka, LA, Pereira, EC (2011) Investigation of polypyrrole degradation using electrochemical impedance spectroscopy. J Phys Chem B 115: pp. 9570-9575 CrossRef
    38. Karlsson, C, Jamstorp, E, Stromme, M, Sjodin, M (2012) Computational electrochemistry study of 16 isoindole-4,7-diones as candidates for organic cathode materials. J Phys Chem C 116: pp. 3793-3801 CrossRef
    39. Karthikeyan, CS, Wietasch, H, Thelakkat, M (2007) Highly efficient solid-state dye-sensitized TiO2 solar cells using donor-antenna dyes capable of multistep charge-transfer cascades. Adv Mater 19: pp. 1091-1095 CrossRef
    40. Haque, SA, Handa, S, Peter, K, Palomares, E, Thelakkat, M, Durrant, JR (2005) Supermolecular control of charge transfer in dye-sensitized nanocrystalline TiO2 films: towards a quantitative structure鈥揻unction relationship. Angew Chem Int Ed 44: pp. 5740-5744 CrossRef
    41. Wang, M, Xu, M, Shi, D, Li, R, Gao, F, Zhang, G, Yi, Z, Humphry-Baker, R, Wang, P, Zakeeruddin, SM, Gr盲tzel, M (2008) High-performance liquid and solid dye-sensitized solar cells based on a novel metal-free organic sensitizer. Adv Mater 20: pp. 4460-4463 CrossRef
    42. Abe, T, Fukuda, H, Iriyama, Y, Ogumi, Z (2004) Solvated Li-ion transfer at interface between graphite and electrolyte. J Electrochem Soc 151: pp. A1120-A1123 CrossRef
    43. Cai, K, Mu, W, Zhang, Q, Jin, Z, Wang, D (2010) Study on the application of N, N鈥?1,4-diethyl, triethylene, and diamine tetrafluoroborate in supercapacitors. Electrochem Solid Stat Lett 13: pp. A147-A149 CrossRef
    44. Hoshikawa, T, Ikebe, T, Kikuchi, R, Eguchi, K (2006) Effects of electrolyte in dye-sensitized solar cells and evaluation by impedance spectroscopy. Electrochim Acta 51: pp. 5286-5294 CrossRef
    45. Wang, M, Moon, S, Zhou, D, Formal, F, Cevey-Ha, N, Humphry-Baker, R, Gratzel, C, Wang, P, Zakeeruddin, S, Gratzel, M (2010) Enhanced-light-harvesting amphiphilic ruthenium dye for efficient solid-state dye-sensitized solar cells. Adv Funct Mater 20: pp. 1821-1826 CrossRef
    46. Namutdinova, G, Sensfuss, S, Schrodner, M, Hinsch, A, Sastrawan, R, Gerhard, D, Himmler, S, Wasserscheid, P (2006) Quasi-solid state polymer electrolytes for dye-sensitized solar cells: effect of the electrolyte components variation on the triiodide ion diffusion properties and charge-transfer resistance at platinum electrode. Solid State Ionics 177: pp. 3141-3146 CrossRef
    47. Premalal, E, Dematage, N, Kumara, G, Rajapakse, R, Shimomura, M, Murakami, K, Konno, A (2012) Preparation of structurally modified, conductivity enhanced-p-CuSCN and its application in dye-sensitized solid-state solar cells. J Power Sources 203: pp. 288-296 CrossRef
    48. Cornil, J, Karzazi, Y, Bredas, JL (2002) Negative differential resistance in phenylene ethynylene oligomers. J Am Chem Soc 124: pp. 3516-3517 CrossRef
    49. Xie, XN, Wang, J, Loh, KP, Wee, SAT (2009) Aggregates-induced dynamic negative differential resistance in conducting organic films. App Phys Lett 95: pp. 203302 CrossRef
    50. Majumder, C, Briere, T, Mizuseki, H, Kawazoe, Y (2002) Molecular resistance in a molecular diode: a case study of the substituted phenylethynyl oligomer. J Phys Chem A 106: pp. 7911-7914 CrossRef
    51. Emberly, EG, Kirczenow, G (2001) Current-driven conformational changes, charging, and negative differential resistance in molecular wires. Phys Rev B 64: pp. 125318 CrossRef
    52. Kratochvilova, I, Kocirik, M, Zambova, A, Mbindyo, J, Mallouk, TE, Mayer, TS (2002) Room temperature negative differential resistance in molecular nanowires. J Mater Chem 12: pp. 2927-2930 CrossRef
    53. Li, J, Tang, A, Li, X, Cao, Y, Wang, M, Ning, Y, Lv, L, Lu, Q, Lu, Y, Hu, Y, Hou, Y, Teng, F (2014) Negative differential resistance and carrier transport of electrically bistable devices based on poly(N-vinylcarbazole)-silver sulfide composites. Nanoscale Res Lett 9: pp. 128 CrossRef
    54. Li, Y, Cao, Y, Gao, J, Wang, D, Yu, G, Heeger, AJ (1999) Electrochemical properties of luminescent polymers and polymer light-emitting electrochemical cells. Synth Met 99: pp. 243-248 CrossRef
    55. Yang, C, Tang, A, Li, X, Jiang, K, Teng, F (2013) Electrochemical evaluation of the frontier orbitals of organic dyes in aqueous electrolyte. Electrochim Acta 102: pp. 108-112 CrossRef
    56. Takacs, CJ, Sun, Y, Welch, GC, Perez, LA, Liu, X, Wen, W, Bazan, GC, Heeger, AJ (2012) Solar cell efficiency, self-assembly, and dipole鈥揹ipole interactions of isomorphic narrow-band-gap molecules. J Am Chem Soc 134: pp. 16597-16606 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Physical Chemistry
    Analytical Chemistry
    Industrial Chemistry and Chemical Engineering
    Characterization and Evaluation Materials
    Condensed Matter
    Electronic and Computer Engineering
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1433-0768
文摘
The solid-state electrochemistry of organic dyes, TT(2-cyano-3-(4-hexyl-5-dimethyltriphenylamine-thien-2-yl)acrylic acid), TTNa(2-cyano-3-(4-hexyl-5-dimethyltriphenylamine-thien-2-yl)acrylic acid sodium salt), and TS(2-[5-(4-hexyl-5-dimethyltriphenylamine-thien-2-yl)methylene-4-oxo-2-thioxothiazolidin-3-yl]acetic acid), was investigated. The redox processes of the solid dyes are electrochemically quasi-reversible. The electrochemical oxidation behaviors of these dye are similar because of the identical donor moieties and the highest occupied molecular orbital (HOMO) distribution in the dyes as revealed by density functional theory (DFT) calculation. The AC impedance spectra show that the dye film shows negative differential resistance characteristics in the high-frequency range and finite diffusion responses in the low-frequency range at higher potentials, which indicates the nonlinear charge transport and limited diffusion of counterions in the solid-state film. The onset oxidation potential of the solid dyes in the cyclic voltammetry does not affected by the ion diffusion. The cyclic voltammetry can be employed to derive reliable HOMO and lowest unoccupied molecular orbital (LUMO) levels of the solid dyes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700