用户名: 密码: 验证码:
Spatial and temporal variability of fluoride concentrations in groundwater resources of Larestan and Gerash regions in Iran from 2003 to 2010
详细信息    查看全文
  • 作者:Hassan Amini ; Gholam Ali Haghighat ; Masud Yunesian…
  • 关键词:Fluoride toxicity ; Groundwater resources ; Iran ; Mann–Kendall trend test ; Spatial variability ; Spatiotemporal
  • 刊名:Environmental Geochemistry and Health
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:38
  • 期:1
  • 页码:25-37
  • 全文大小:3,347 KB
  • 参考文献:Ab & Abfa Bureau of Engineering & Technical Standards. (2011). Draft of instructions on groundwater quality monitoring- Publication 384-A
    Aghazadeh, N., & Mogaddam, A. A. (2010). Assessment of groundwater quality and its suitability for drinking and agricultural uses in the Oshnavieh Area, Northwest of Iran. Journal of Environmental Protection, 1, 30.CrossRef
    Amini, M., Mueller, K., Abbaspour, K. C., Rosenberg, T., Afyuni, M., Møller, K. N., & Johnson, C. A. (2008). Statistical modeling of global geogenic fluoride contamination in groundwaters. Environmental Science & Technology, 42(10), 3662–3668. doi:10.​1021/​es071958y
    Amini, H., Taghavi Shahri, S. M., Amini, M., Mehrian, M. R., Mokhayeri, Y., & Yunesian, M. (2011). Drinking water fluoride and blood pressure? An environmental study. Biological Trace Element Research, 144(1), 157–163. doi:10.​1007/​s12011-011-9054-5 CrossRef
    Amini, H., Taghavi Shahri, S. M., Henderson, S. B., Naddafi, K., Nabizadeh, R., & Yunesian, M. (2014). Land use regression models to estimate the annual and seasonal spatial variability of sulfur dioxide and particulate matter in Tehran, Iran. Science of the Total Environment, 488–489, 343–353. doi:10.​1016/​j.​scitotenv.​2014.​04.​106
    Ayoob, S., & Gupta, A. K. (2006). Fluoride in drinking water: A review on the status and stress effects. Critical Reviews in Environmental Science and Technology, 36(6), 433–487. doi:10.​1080/​1064338060067811​2 CrossRef
    Battaleb-Looie, S., & Moore, F. (2010). A study of fluoride groundwater occurrence in Posht-e-Kooh-e-Dashtestan, South of Iran. World Applied Science Journal, 8(11), 1317–1321.
    Battaleb-Looie, S., Moore, F., Jafari, H., Jacks, G., & Ozsvath, D. (2012). Hydrogeochemical evolution of groundwaters with excess fluoride concentrations from Dashtestan, South of Iran. Environmental Earth Sciences, 67(4), 1173–1182. doi:10.​1007/​s12665-012-1560-z
    Beg, M. K., Srivastav, S. K., Carranza, E. J. M., & de Smeth, J. B. (2011). High fluoride incidence in groundwater and its potential health effects in parts of Raigarh District, Chhattisgarh, India. Current Science, 100(5), 750–754.
    Chaudhuri, S., & Ale, S. (2013). Characterization of groundwater resources in the Trinity and Woodbine aquifers in Texas. Science of the Total Environment, 452, 333–348. doi:10.​1016/​j.​scitotenv.​2013.​02.​081
    Clesceri, L. S., Greenberg, A. E., & Eaton, A. D. (1998). Standard methods for the examination of water and wastewater (vol. 20). Washington: American Public Health Association, American Water Works Association, American Environment Federation.
    Dash, J. P., Sarangi, A., & Singh, D. K. (2010). Spatial variability of groundwater depth and quality parameters in the National Capital Territory of Delhi. Environmental Management, 45(3), 640–650. doi:10.​1007/​s00267-010-9436-z CrossRef
    Dobaradaran, S., Mahvi, A. H., Dehdashti, S., & Abadi, D. R. V. (2008). Drinking water fluoride and child dental caries in Dashtestan, Iran. Fluoride, 41(3), 220–226.
    Fawell, J., Bailey, K., Chilton, J., Dahi, E., Fewtrell, L., & Magara, Y. (2006). Fluoride in drinking-water. London: Published on behalf of the World Health Organization by IWA.
    Fordyce, F., Vrana, K., Zhovinsky, E., Povoroznuk, V., Toth, G., Hope, B., & Baker, J. (2007). A health risk assessment for fluoride in Central Europe. Environmental Geochemistry and Health, 29(2), 83–102. doi:10.​1007/​s10653-006-9076-7
    Francisca, F. M., & Perez, M. E. C. (2009). Assessment of natural arsenic in groundwater in Cordoba Province, Argentina. Environmental Geochemistry and Health, 31(6), 673–682. doi:10.​1007/​s10653-008-9245-y CrossRef
    Geological Survey of Iran (2014). The geological formation of Larestan and Gerash regions, Iran. Tehran, Iran.
    Gross, E. L., Lindsey, B. D., & Rupert, M. (2012). Quality of major ion and total dissolved solids data from groundwater sampled by the national water-quality assessment program, 1992–2010: US Department of the Interior, US Geological Survey.
    Hamed, K. H. (2008). Trend detection in hydrologic data: The Mann–Kendall trend test under the scaling hypothesis. Journal of Hydrology, 349(3), 350–363. doi:10.​1016/​j.​jhydrol.​2007.​11.​009
    Hamed, K. (2009). Exact distribution of the Mann–Kendall trend test statistic for persistent data. Journal of Hydrology, 365(1), 86–94. doi:10.​1016/​j.​jhydrol.​2008.​11.​024
    Hamed, K. H., & Ramachandra Rao, A. (1998). A modified Mann–Kendall trend test for autocorrelated data. Journal of Hydrology, 204(1), 182–196. doi:10.​1016/​S0022-1694(97)00125-X
    Hipel, K. W., & McLeod, A. I. (2005). Time series modelling of water resources and environmental systems. Elsevier. http://​www.​stats.​uwo.​ca/​faculty/​aim/​1994 .
    Hirsch, R. M., Alexander, R. B., & Smith, R. A. (1991). Selection of methods for the detection and estimation of trends in water quality. Water Resources Research, 27(5), 803–813. doi:10.​1029/​91WR00259
    Institute of Standards and Industrial Research of Iran. (2009). Drinking water physical and chemical specifications (vol. ISIRI No. 1053 5th ed). Tehran.
    Kahya, E., & Kalayci, S. (2004). Trend analysis of streamflow in Turkey. Journal of Hydrology, 289(1–4), 128–144. doi:10.​1016/​j.​jhydrol.​2003.​11.​006 CrossRef
    Kantharaja, D., Lakkundi, T., Basavanna, M., & Manjappa, S. (2012). Spatial analysis of fluoride concentration in groundwaters of Shivani watershed area, Karnataka state, South India, through geospatial information system. Environmental Earth Sciences, 65(1), 67–76. doi:10.​1007/​s12665-011-1065-1 CrossRef
    Kent, R., & Landon, M. K. (2013). Trends in concentrations of nitrate and total dissolved solids in public supply wells of the Bunker Hill, Lytle, Rialto, and Colton groundwater subbasins, San Bernardino County, California: Influence of legacy land use. Science of the Total Environment, 452, 125–136. doi:10.​1016/​j.​scitotenv.​2013.​02.​042
    Keshavarzi, B., Moore, F., Esmaeili, A., & Rastmanesh, F. (2010). The source of fluoride toxicity in Muteh area, Isfahan, Iran. Environmental Earth Sciences, 61(4), 777–786. doi:10.​1007/​s12665-009-0390-0
    Kundu, M. C., Mandal, B., & Hazra, G. C. (2009). Nitrate and fluoride contamination in groundwater of an intensively managed agroecosystem: A functional relationship. Science of the Total Environment, 407(8), 2771–2782. doi:10.​1016/​j.​scitotenv.​2008.​12.​048 CrossRef
    Lins, H. F., & Slack, J. R. (1999). Streamflow trends in the United States. Geophysical Research Letters, 26(2), 227–230. doi:10.​1029/​1998gl900291 CrossRef
    Meenakshi, & Maheshwari, R. (2006). Fluoride in drinking water and its removal. Journal of Hazardous Materials, 137(1), 456–463. doi:10.​1016/​j.​jhazmat.​2006.​02.​024
    Mahvi, A. H., & Amini, H. (2011). Fluoride in drinking water (1st ed.). Tehran: Avay-e-Ghalam.
    Mahvi, A. H., Zazoli, M. A., Younecian, M., & Esfandiari, Y. (2006). Fluoride content of Iranian black tea and tea liquor. Fluoride, 39(4), 266–268.
    Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13, 245–259.CrossRef
    Mason, B. H., & Moore, C. B. (1987). Principles of geochemistry. New York: Wiley.
    Mesdaghinia, A., Vaghefi, K., Montazeri, A., Mohebbi, M., & Saeedi, R. (2010). Monitoring of fluoride in groundwater resources of Iran. Bulletin of Environmental Contamination and Toxicology, 84(4), 432–437. doi:10.​1007/​s00128-010-9950-y CrossRef
    Moghaddam, A. A., & Fijani, E. (2008). Distribution of fluoride in groundwater of Maku area, northwest of Iran. Environmental Geology, 56(2), 281–287. doi:10.​1007/​s00254-007-1163-2
    Nouri, J., Mahvi, A. H., Babaei, A., & Ahmadpour, E. (2006). Regional pattern distribution of groundwater fluoride in the Shush aquifer of Khuzestan County, Iran. Fluoride, 39(4), 321.
    Ozsvath, D. (2009). Fluoride and environmental health: A review. Reviews in Environmental Science & Biotechnology, 8(1), 59–79. doi:10.​1007/​s11157-008-9136-9 CrossRef
    Petersen, P. E., & Lennon, M. A. (2004). Effective use of fluorides for the prevention of dental caries in the 21st century: The WHO approach. Community Dentistry and Oral Epidemiology, 32(5), 319–321. doi:10.​1111/​j.​1600-0528.​2004.​00175.​x
    R Core Team. (2012). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://​www.​R-project.​org/​
    Rahmani, A., Rahmani, K., Dobaradaran, S., Mahvi, A. H., Mohamadjani, R., & Rahmani, H. (2010). Child dental caries in relation to fluoride and some inorganic constituents in drinking water in Arsanjan, Iran. Fluoride, 43(4), 179–186.
    Rao, M. J., Durgaiah, B., Saradhi, B. V., Jaisankar, G., Rao, D. P., & Ganesh, K. M. (2007). Spatial variability of groundwater chemical quality in part of Nalgonda district, Andhra Pradesh. Journal of the Geological Society of India, 69(5), 983–988.
    Raziei, T., Daryabari, J., Bordi, I., Modarres, R., & Pereira, L. S. (2014). Spatial patterns and temporal trends of daily precipitation indices in Iran. Climatic Change, 124(1–2), 239–253. doi:10.​1007/​s10584-014-1096-1 CrossRef
    Singh, S. K., Srivastava, P. K., & Pandey, A. C. (2013). Fluoride contamination mapping of groundwater in Northern India integrated with geochemical indicators and GIS. Water Science and Technology-Water Supply, 13(6), 1513–1523. doi:10.​2166/​ws.​2013.​160 CrossRef
    Sreedevi, P., Ahmed, S., Made, B., Ledoux, E., & Gandolfi, J.-M. (2006). Association of hydrogeological factors in temporal variations of fluoride concentration in a crystalline aquifer in India. Environmental Geology, 50(1), 1–11. doi:10.​1007/​s00254-005-0167-z
    Turkes, M. (1996). Spatial and temporal analysis of annual rainfall variations in Turkey. International Journal of Climatology, 16(9), 1057–1076. doi:10.​1002/​(SICI)1097-0088(199609)16:​9<1057:​:​AID-JOC75>3.​0.​CO;2-D
    Viswanathan, G., Jaswanth, A., & Gopalakrishnan, S. (2009). Mapping of fluoride endemic areas and assessment of fluoride exposure. Science of the Total Environment, 407(5), 1579–1587. doi:10.​1016/​j.​scitotenv.​2008.​10.​020
    Vousoughi, F. D., Dinpashoh, Y., Aalami, M. T., & Jhajharia, D. (2013). Trend analysis of groundwater using non-parametric methods (case study: Ardabil plain). Stochastic Environmental Research and Risk Assessment, 27(2), 547–559. doi:10.​1007/​s00477-012-0599-4 CrossRef
    WHO. (2011). Guidelines for drinking-water quality (4th ed.). Geneva: World Health Organization.
    Xu, Z. X., Takeuchi, K., & Ishidaira, H. (2003). Monotonic trend and step changes in Japanese precipitation. Journal of Hydrology, 279(1–4), 144–150. doi:10.​1016/​s0022-1694(03)00178-1 CrossRef
    Yue, S., & Wang, C. (2004). The Mann–Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resources Management, 18(3), 201–218. doi:10.​1023/​B:​WARM.​0000043140.​61082.​60
    Zhai, X. Y., Xia, J., & Zhang, Y. Y. (2014). Water quality variation in the highly disturbed Huai River Basin, China from 1994 to 2005 by multi-statistical analyses. Science of the Total Environment, 496, 594–606. doi:10.​1016/​j.​scitotenv.​2014.​06.​101 CrossRef
  • 作者单位:Hassan Amini (1) (2) (3)
    Gholam Ali Haghighat (13) (4)
    Masud Yunesian (5) (6)
    Ramin Nabizadeh (6)
    Amir Hossein Mahvi (6) (7)
    Mohammad Hadi Dehghani (6)
    Rahim Davani (8)
    Abd-Rasool Aminian (9)
    Mansour Shamsipour (10) (5)
    Naser Hassanzadeh (11) (14)
    Hossein Faramarzi (12)
    Alireza Mesdaghinia (15) (6)

    1. Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute (Swiss TPH), Socinstrasse 57, 4002, Basel, Switzerland
    2. University of Basel, Petersplatz 1, 4003, Basel, Switzerland
    3. Kurdistan Environmental Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
    13. University of Applied Science and Technology, Larestan, Iran
    4. Larestan School of Medical Sciences, Larestan, Iran
    5. Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
    6. Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
    7. Center for Solid Waste Research (CSWR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
    8. Wastewater Laboratory, Shiraz Health Center, Shiraz University of Medical Sciences, Shiraz, Iran
    9. Basic Studies of Water Resources, Fars South Center, Larestan, Iran
    10. Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
    11. Young Researchers and Elite Club, Sardasht Branch, Islamic Azad University, Sardasht, Iran
    14. Department of Geography and Urban Planning, Payame Noor University, Sardasht, Iran
    12. Department of Social Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
    15. Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geochemistry
    Atmospheric Protection, Air Quality Control and Air Pollution
    Public Health
  • 出版者:Springer Netherlands
  • ISSN:1573-2983
文摘
There is discrepancy about intervals of fluoride monitoring in groundwater resources by Iranian authorities. Spatial and temporal variability of fluoride in groundwater resources of Larestan and Gerash regions in Iran were analyzed from 2003 to 2010 using a geospatial information system and the Mann–Kendall trend test. The mean concentrations of fluoride for the 8-year period in the eight cities and 31 villages were 1.6 and 2.0 mg/l, respectively; the maximum values were 2.4 and 3.8 mg/l, respectively. Spatial, temporal, and spatiotemporal variability of fluoride in overall groundwater resources were relatively constant over the years. However, results of the Mann–Kendall trend test revealed a monotonic trend in the time series of one city and 11 villages for the 8-year period. Specifically, one city and three villages showed positive significant Kendall’s Tau values, suggesting an upward trend in fluoride concentrations over the 8-year period. In contrast, seven villages displayed negative significant Kendall’s Tau values, arguing for a downward trend in fluoride concentrations over the years. From 2003 to 2010, approximately 52 % of the Larestan and Gerash areas have had fluoride concentrations above the maximum permissible Iranian drinking water standard fluoride level (1.4 mg/l), and about 116,000 people were exposed to such excess amounts. Therefore, our study supports for a close monitoring of fluoride concentrations from health authorities in monthly intervals, especially in villages and cities that showed positive trend in fluoride concentrations. Moreover, we recommend simultaneous implementation of cost-effective protective measures or interventions until a standard fluoride level is achieved. Keywords Fluoride toxicity Groundwater resources Iran Mann–Kendall trend test Spatial variability Spatiotemporal

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700