用户名: 密码: 验证码:
Large-scale integrative network-based analysis identifies common pathways disrupted by copy number alterations across cancers
详细信息    查看全文
  • 作者:Tae Hyun Hwang (13) (17) (18) (19)
    Gowtham Atluri (14)
    Rui Kuang (14)
    Vipin Kumar (14)
    Timothy Starr (13) (16)
    Kevin AT Silverstein (13)
    Peter M Haverty (15)
    Zemin Zhang (15)
    Jinfeng Liu (15)
  • 刊名:BMC Genomics
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:14
  • 期:1
  • 全文大小:1167KB
  • 参考文献:1. Albertson DG, Collins C, / et al.: Chromosome aberrations in solid tumors. / Nat Genet 2003,34(4):369鈥?76. CrossRef
    2. Shlien A, Malkin D: Copy number variations and cancer. / Genome 2009,1(6):62. CrossRef
    3. Wood LD, Parsons DW, / et al.: The genomic landscapes of human breast and colorectal cancers. / Science 2007,318(5853):1108. CrossRef
    4. Jones S, Zhang X, / et al.: Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. / Science 2008,321(5897):1801. CrossRef
    5. McLendon R, Friedman A, / et al.: Comprehensive genomic characterization defines human glioblastoma genes and core pathways. / Nature 2008,455(7216):1061鈥?068. CrossRef
    6. Parsons DW, Jones S, / et al.: An integrated genomic analysis of human glioblastoma multiforme. / Science 2008,321(5897):1807. CrossRef
    7. van鈥檛 Veer LJ, Bernards R: Enabling personalized cancer medicine through analysis of gene-expression patterns. / Nature 2008,452(7187):564. CrossRef
    8. Lee W, Jiang Z, / et al.: The mutation spectrum revealed by paired genome sequences from a lung cancer patient. / Nature 2010,465(7297):473鈥?77. CrossRef
    9. Network, T. C. G. A. R: Integrated genomic analyses of ovarian carcinoma. / Nature 2011, 474:609鈥?15. CrossRef
    10. Parsons DW, Li M, / et al.: The genetic landscape of the childhood cancer medulloblastoma. / Science 2011,331(6016):435. CrossRef
    11. Stransky N, Egloff AM, / et al.: The mutational landscape of head and neck squamous cell carcinoma. / Science 2011,333(6046):1157鈥?160. CrossRef
    12. Hammerman PS, Lawrence MS, / et al.: Comprehensive genomic characterization of squamous cell lung cancers. / Nature 2012, 489:519鈥?25. CrossRef
    13. Koboldt DC, Fulton RS, / et al.: 鈥淐omprehensive molecular portraits of human breast tumours.鈥? / Nature 2012.
    14. Kandoth C, Schultz N, / et al.: Integrated genomic characterization of endometrial carcinoma. / Nature 2013,497(7447):67鈥?3. CrossRef
    15. Hudson TJ, Anderson W, / et al.: International network of cancer genome projects. / Nature 2010,464(7291):993鈥?98. CrossRef
    16. Ideker T, Ozier O, / et al.: Discovering regulatory and signalling circuits in molecular interaction networks. / Bioinformatics 2002,18(suppl 1):S233. CrossRef
    17. Martin D, Brun C, / et al.: GOToolBox: functional analysis of gene datasets based on Gene Ontology. / Genome Biol 2004,5(12):R101. CrossRef
    18. Subramanian A, Tamayo P, / et al.: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. / Proc Natl Acad Sci U S A 2005,102(43):15545. CrossRef
    19. Da Wei Huang BTS, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. / Nat Protoc 2008,4(1):44鈥?7. CrossRef
    20. Cabusora L, Sutton E, / et al.: Differential network expression during drug and stress response. / Bioinformatics 2005,21(12):2898. CrossRef
    21. Rajagopalan D, Agarwal P: Inferring pathways from gene lists using a literature-derived network of biological relationships. / Bioinformatics 2005,21(6):788. CrossRef
    22. Chuang HY, Lee E, / et al.: Network-based classification of breast cancer metastasis. / Mol Syst Biol 2007,3(1):140.
    23. Guo Z, Li Y, / et al.: Edge-based scoring and searching method for identifying condition-responsive protein鈥損rotein interaction sub-network. / Bioinformatics 2007,23(16):2121. CrossRef
    24. Dittrich MT, Klau GW, / et al.: Identifying functional modules in protein鈥損rotein interaction networks: an integrated exact approach. / Bioinformatics 2008,24(13):i223. CrossRef
    25. Ulitsky I, Shamir R: Identifying functional modules using expression profiles and confidence-scored protein interactions. / Bioinformatics 2009,25(9):1158. CrossRef
    26. Cerami E, Demir E, / et al.: Automated network analysis identifies core pathways in glioblastoma. / PLoS One 2010,5(2):e8918. CrossRef
    27. Vandin F, Upfal E, / et al.: Algorithms for detecting significantly mutated pathways in cancer, Springer. / Journal of Computational Biology 2010,18(3):507鈥?22. CrossRef
    28. Lee E, Chuang HY, / et al.: Inferring pathway activity toward precise disease classification. / PLoS Comput Biol 2008,4(11):e1000217. CrossRef
    29. Vaske CJ, Benz SC, / et al.: Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. / Bioinformatics 2010,26(12):i237. CrossRef
    30. Beroukhim R, Getz G, / et al.: Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. / Proc Natl Acad Sci 2007,104(50):20007. CrossRef
    31. Zhou D, Bousquet O, / et al.: Learning with local and global consistency. / Advances in neural information processing systems 2004, 16.16:321鈥?28.
    32. Hwang TH, Sicotte H, / et al.: Robust and efficient identification of biomarkers by classifying features on graphs. / Bioinformatics 2008,24(18):2023. CrossRef
    33. Mostafavi S, Ray D, / et al.: GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. / Genome Biol 2008,9(Suppl 1):S4. CrossRef
    34. Tian Z, Hwang TH, / et al.: A hypergraph-based learning algorithm for classifying gene expression and arrayCGH data with prior knowledge. / Bioinformatics 2009,25(21):2831. CrossRef
    35. Hwang T, Kuang R: A heterogeneous label propagation algorithm for disease gene discovery. / Proceedings of SIAM international conference on data mining 2010, 583鈥?94.
    36. Vanunu O, Magger O, / et al.: Associating genes and protein complexes with disease via network propagation. / PLoS Comput Biol 2010,6(1):e1000641. CrossRef
    37. Hanahan D: The hallmarks of cancer. / Cell 2000,100(1):57鈥?0. CrossRef
    38. Lin SY, Elledge SJ: Multiple tumor suppressor pathways negatively regulate telomerase. / Cell 2003,113(7):881鈥?89. CrossRef
    39. Renaud S, Loukinov D, / et al.: CTCF binds the proximal exonic region of hTERT and inhibits its transcription. / Nucleic Acids Res 2005,33(21):6850. CrossRef
    40. Zhao J, Bilsland A, / et al.: MDM2 negatively regulates the human telomerase RNA gene promoter. / BMC cancer 2005,5(1):6. CrossRef
    41. Sherr CJ: Tumor surveillance via the ARF鈥損53 pathway. / Genes Dev 1998,12(19):2984. CrossRef
    42. Massagu茅 J: TGF尾 in cancer. / Cell 2008,134(2):215鈥?30. CrossRef
    43. Williams GH, Stoeber K: "The cell cycle and cancer." The Journal of pathology. / Proceedings of the National Academy of Sciences 2012,94.7(1997):2776鈥?778.
    44. Shay JW, Wright WE: Role of telomeres and telomerase in cancer. Seminars in cancer biology, Elsevier. / In Seminars in cancer biology 2011,21(No. 6):349鈥?53. Academic Press CrossRef
    45. Lagadec C, Meignan S, / et al.: TrkA overexpression enhances growth and metastasis of breast cancer cells. / Oncogene 2009,28(18):1960鈥?970. CrossRef
    46. Huang H, Bhat A, / et al.: Targeting the ANGPT鈥揟IE2 pathway in malignancy. / Nat Rev Cancer 2010,10(8):575鈥?85. CrossRef
    47. Bergom C, Gao C, / et al.: Mechanisms of PECAM-1-mediated cytoprotection and implications for cancer cell survival. / Leuk Lymphoma 2005,46(10):1409鈥?421. CrossRef
    48. DeLisser H, Liu Y, / et al.: Vascular endothelial platelet endothelial cell adhesion molecule 1 (PECAM-1) regulates advanced metastatic progression. / Proc Natl Acad Sci 2010,107(43):18616鈥?8621. CrossRef
    49. Dormoy V, Danilin S, / et al.: The sonic hedgehog signaling pathway is reactivated in human renal cell carcinoma and plays orchestral role in tumor growth. / Mol Cancer 2009,8(1):123. CrossRef
    50. Ulasov IV, Nandi S, / et al.: Inhibition of Sonic Hedgehog and Notch Pathways Enhances Sensitivity of CD133+ Glioma Stem Cells to Temozolomide Therapy. / Mol Med 2011,17(1鈥?):103.
    51. Azuma K, Sasada T, / et al.: Ran, a small GTPase gene, encodes cytotoxic T lymphocyte (CTL) epitopes capable of inducing HLA-A33鈥搑estricted and tumor-reactive CTLs in cancer patients. / Clin Cancer Res 2004,10(19):6695. CrossRef
    52. Suthram S, Dudley JT, / et al.: Network-based elucidation of human disease similarities reveals common functional modules enriched for pluripotent drug targets. / PLoS Comput Biol 2010,6(2):e1000662. CrossRef
    53. Kelley BP, Yuan B, / et al.: PathBLAST: a tool for alignment of protein interaction networks. / Nucleic Acids Res 2004,32(suppl 2):W83. CrossRef
    54. Bild AH, Yao G, / et al.: Oncogenic pathway signatures in human cancers as a guide to targeted therapies. / Nature 2005,439(7074):353鈥?57. CrossRef
    55. Wang Y, Klijn JGM, / et al.: Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. / Lancet 2005,365(9460):671鈥?79.
    56. Shedden K, Taylor JMG, / et al.: Gene expression鈥揵ased survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. / Nat Med 2008,14(8):822鈥?27. CrossRef
    57. Tothill RW, Tinker AV, / et al.: Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. / Clin Cancer Res 2008,14(16):5198. CrossRef
    58. Gu Z, Reynolds EM, / et al.: The type I serine/threonine kinase receptor ActRIA (ALK2) is required for gastrulation of the mouse embryo. / Development 1999,126(11):2551鈥?561.
    59. Barrett JC, Lee JC, / et al.: Genome-wide association study of ulcerative colitis identifies three new susceptibility loci, including the HNF4A region. / Nat Genet 2009,41(12):1330鈥?334. CrossRef
    60. Marcil V, Sinnett D, / et al.: Association between genetic variants in the HNF4A gene and childhood-onset Crohn鈥檚 disease. / Genes Immun 2012, 13.7:565鈥?56.
    61. Yokoyama T, Kanno Y, / et al.: Trib1 links the MEK1/ERK pathway in myeloid leukemogenesis. / Blood 2010,116(15):2768鈥?775. CrossRef
    62. Hwang T, Zhang W, / et al.: 鈥淚nferring disease and gene Set associations with rank coherence in networks.鈥? / Bioinformatics 2011, 27.19:2692鈥?699. CrossRef
    63. Beroukhim R, Mermel CH, / et al.: The landscape of somatic copy-number alteration across human cancers. / Nature 2010,463(7283):899. CrossRef
    64. Keshava Prasad T, Goel R, / et al.: Human protein reference database鈥?009 update. / Nucleic Acids Res 2009,37(suppl 1):D767-D772. CrossRef
    65. Wu X, Jiang R, / et al.: Network-based global inference of human disease genes. / Mol Syst Biol 2008,4(1):189.
  • 作者单位:Tae Hyun Hwang (13) (17) (18) (19)
    Gowtham Atluri (14)
    Rui Kuang (14)
    Vipin Kumar (14)
    Timothy Starr (13) (16)
    Kevin AT Silverstein (13)
    Peter M Haverty (15)
    Zemin Zhang (15)
    Jinfeng Liu (15)

    13. Masonic Cancer Center, University of Minnesota 鈥?Twin Cities, Minneapolis, MN, USA
    17. Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
    18. Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
    19. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
    14. Department of Computer Science and Engineering, University of Minnesota 鈥?Twin Cities, Minneapolis, MN, USA
    16. Department of Obstetrics, Gynecology & Women鈥檚 Health, University of Minnesota, Minneapolis, MN, USA
    15. Department of Bioinformatics and Computational Biology, Genentech Inc, South San Francisco, CA, USA
文摘
Background Many large-scale studies analyzed high-throughput genomic data to identify altered pathways essential to the development and progression of specific types of cancer. However, no previous study has been extended to provide a comprehensive analysis of pathways disrupted by copy number alterations across different human cancers. Towards this goal, we propose a network-based method to integrate copy number alteration data with human protein-protein interaction networks and pathway databases to identify pathways that are commonly disrupted in many different types of cancer. Results We applied our approach to a data set of 2,172 cancer patients across 16 different types of cancers, and discovered a set of commonly disrupted pathways, which are likely essential for tumor formation in majority of the cancers. We also identified pathways that are only disrupted in specific cancer types, providing molecular markers for different human cancers. Analysis with independent microarray gene expression datasets confirms that the commonly disrupted pathways can be used to identify patient subgroups with significantly different survival outcomes. We also provide a network view of disrupted pathways to explain how copy number alterations affect pathways that regulate cell growth, cycle, and differentiation for tumorigenesis. Conclusions In this work, we demonstrated that the network-based integrative analysis can help to identify pathways disrupted by copy number alterations across 16 types of human cancers, which are not readily identifiable by conventional overrepresentation-based and other pathway-based methods. All the results and source code are available at http://compbio.cs.umn.edu/NetPathID/.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700