用户名: 密码: 验证码:
Facile synthesis and luminescence properties of europium(III)-doped silica nanotubes
详细信息    查看全文
  • 作者:Fei Gao (1) (2)
    Ye Sheng (1)
    Yanhua Song (1)
    Keyan Zheng (1)
    Chunming Lin (1)
    Hui Zhang (1)
    Qisheng Huo (3)
    Haifeng Zou (1)
  • 关键词:Tartaric acid ; Template ; Europium ; Eu3+ ; doped silica nanotubes ; Sol–gel ; Photoluminescence
  • 刊名:Journal of Sol-Gel Science and Technology
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:71
  • 期:2
  • 页码:313-323
  • 全文大小:2,857 KB
  • 参考文献:1. Jung JH, Yoshida K, Shimizu T (2002) Creation of novel double-helical silica nanotubes using binary gel system. Langmuir 18(23):8724-727 CrossRef
    2. Chao M-C, Chang C-H, Lin H-P, Tang C-Y, Lin C-Y (2009) Morphological control on SBA-15 mesoporous silicas via a slow self-assembling rate. J Mater Sci 44(24):6453-462 CrossRef
    3. Yang Z, Zhang Y, Liu D, Nie E, Jiao Z, Jin Y, He Y, Gong M, Sun X (2010) Selective synthesis of SiO2 NWs on Si substrate and their adjustable photoluminescence. J Non-Cryst Solids 356(41):2207-210 CrossRef
    4. Jin Y, Lohstreter S, Pierce DT, Parisien J, Wu M, Hall C, Zhao JX (2008) Silica nanoparticles with continuously tunable sizes: synthesis and size effects on cellular contrast imaging. Chem Mater 20(13):4411-419. doi:10.1021/cm8007478 CrossRef
    5. Moran CE, Hale GD, Halas NJ (2001) Synthesis and characterization of lanthanide-doped silica microspheres. Langmuir 17(26):8376-379 CrossRef
    6. Wang B, Chen JS, Wu HB, Wang Z, Lou XW (2011) Quasiemulsion-templated formation of α-Fe2O3 hollow spheres with enhanced lithium storage properties. J Am Chem Soc 133(43):17146-7148 CrossRef
    7. Clavier G, Pozzo J, Bouas-Laurent H, Liere C, Roux C, Sanchez C (2000) Organogelators for making porous sol–gel derived silica at two different length scales. J Mater Chem 10(7):1725-730 CrossRef
    8. Vos W, Polman A (2001) Optical probes inside photonic crystals. MRS Bull 26(8):642-46 CrossRef
    9. Dong W, Zhao H, Li C, Mei J, Chen B, Tang W, Shi Z, Feng S (2011) Hetero-nanostructure of silver nanoparticles on MO x (M=Mo, Ti and Si) and their applications. Sci China Chem 54(6):865-75 CrossRef
    10. Han WS, Kang Y, Lee SJ, Lee H, Do Y, Lee Y-A, Jung JH (2005) Fabrication of color-tunable luminescent silica nanotubes loaded with functional dyes using a sol–gel cocondensation method. J Phys Chem B 109(44):20661-0664. doi:10.1021/jp0547156 CrossRef
    11. Okamoto K, Shook CJ, Bivona L, Lee SB, English DS (2004) Direct observation of wetting and diffusion in the hydrophobic interior of silica nanotubes. Nano Lett 4(2):233-39 CrossRef
    12. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15(5):353-89 CrossRef
    13. Satishkumar BC, Govindaraj A, Nath M, Rao CNR (2000) Synthesis of metal oxide nanorods using carbon nanotubes as templates. J Mater Chem 10(9):2115-119. doi:10.1039/B002868L CrossRef
    14. Yin Y, Lu Y, Sun Y, Xia Y (2002) Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica. Nano Lett 2(4):427-30 CrossRef
    15. Llusar M, Sanchez C (2008) Inorganic and hybrid nanofibrous materials templated with organogelators- Chem Mater 20(3):782-20 CrossRef
    16. Martin CR (1996) Membrane-based synthesis of nanomaterials. Chem Mater 8(8):1739-746. doi:10.1021/cm960166s CrossRef
    17. Str?k W, Dereń P, ?ukowiak E, Hanuza J, Drulis H, Bednarkiewicz A, Gaishun V (2001) Spectroscopic studies of chromium-doped silica sol–gel glasses. J Non-Cryst Solids 288(1):56-5 CrossRef
    18. dos Santos CM, Harte AJ, Quinn SJ, Gunnlaugsson T (2008) Recent developments in the field of supramolecular lanthanide luminescent sensors and self-assemblies. Coord Chem Rev 252(23):2512-527 CrossRef
    19. Bottrill M, Kwok L, Long NJ (2006) Lanthanides in magnetic resonance imaging. Chem Soc Rev 35(6):557-71 CrossRef
    20. Adachi C, Baldo MA, Forrest SR (2000) Electroluminescence mechanisms in organic light emitting devices employing a europium chelate doped in a wide energy gap bipolar conducting host. J Appl Phys 87(11):8049-055 CrossRef
    21. Binnemans K (2009) Lanthanide-based luminescent hybrid materials. Chem Rev 109(9):4283-374 CrossRef
    22. Zhao D, Qin W, Wu C, Qin G, Zhang J, Lü S (2004) Laser selective spectroscopy of europium complex embedded in colloidal silica spheres. Chem Phys Lett 388(4):400-05 CrossRef
    23. Qiao Y, Chen H, Lin Y, Yang Z, Cheng X, Huang J (2011) Photoluminescent lanthanide-doped silica nanotubes: sol–gel transcription from functional template. J Phys Chem C 115(15):7323-330 CrossRef
    24. Gao F, Song Y, Sheng Y, Lin C, Huo Q, Zou H (2013) Growth, structure and optical properties of tartaric acid-templated silica nanotubes by sol–gel method. J Sol–Gel Sci Technol 68(2):204-12 CrossRef
    25. Lin C, Song Y, Gao F, Zhang H, Sheng Y, Zheng K, Shi Z, Xu X, Zou H (2014) Synthesis and luminescence properties of Eu3+-doped silica nanorods based on the sol–gel process. J Sol–Gel Sci Technol 69(3):536-43
    26. Li Y, Ge M, Li J, Wang J, Zhang H (2011) Synthesis of mesoporous Eu2O3 microspheres and Eu2O3 nanoparticle-wires as well as their optical properties. CrystEngComm 13(2):637-41 CrossRef
    27. Guo Y, Dou W, Zhou X, Liu W, Qin W, Zang Z, Zhang H, Wang D (2009) Influence of conformational flexibility on self-assembly and luminescence properties of lanthanide coordination polymers with flexible exo-bidentate biphenol derivatives. Inorg Chem 48(8):3581-590 CrossRef
    28. Thomas V, Jose G, Jose G, Biju P, Rajagopal S, Unnikrishnan N (2005) Structural evolution and fluorescence properties of Dy3+: silica matrix. J Sol–Gel Sci Technol 33(3):269-74 CrossRef
    29. Banerjee S, Datta A (2009) Photoluminescent silica nanotubes and nanodisks prepared by the reverse micelle sol–gel method. Langmuir 26(2):1172-176 CrossRef
    30. Uchino T, Kurumoto N, Sagawa N (2006) Structure and formation mechanism of blue-light-emitting centers in silicon and silica-based nanostructured materials. Phys Rev B 73(23):233203 CrossRef
  • 作者单位:Fei Gao (1) (2)
    Ye Sheng (1)
    Yanhua Song (1)
    Keyan Zheng (1)
    Chunming Lin (1)
    Hui Zhang (1)
    Qisheng Huo (3)
    Haifeng Zou (1)

    1. College of Chemistry, Jilin University, Changchun, 130012, People’s Republic of China
    2. Chemistry and Chemical Engineering College, Inner Mongolia University for the Nationalities, Tongliao, 028000, People’s Republic of China
    3. State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People’s Republic of China
  • ISSN:1573-4846
文摘
Photoluminescent nanomaterials had emerged as an amazing field in a wide range of applications during the past few decades. In this article, fibrous europium tartrates and photoluminescent silica nanotubes were conveniently synthesized by using sol–gel method, in which europium ions entered silica matrix. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction analysis, fourier transform infrared spectra, energy-dispersive X-ray spectroscopy and photoluminescence (PL) spectra analysis were used to characterize the growth, structure, morphology and optical property of the products. The results indicated that europium tartrates nanofibers as a template can transform tetraethylorthosilicate into silica nanotubes effectively. Meanwhile, europium(III) was transferred from the fibers to the tubes successfully. A hard template mechanism was proposed to explain the formation process of europium(III)-doped silica nanotubes. Moreover, different morphologies of silica-based nanomaterials were obtained due to varying NH4OH addition or stirring time. PL spectra from nanofiber and nanotube show a typical emission of europium(III), and 13?% is the quenching concentration of europium(III) in silica matrix for this system. The novel silica nanotubes can be applied potentially in optical and biological areas.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700