用户名: 密码: 验证码:
Molecular dynamics simulation of the water transportation through a carbon nanotube. The effect of electric field
详细信息    查看全文
  • 作者:Maryam Ghadamgahi ; Davood Ajloo
  • 关键词:molecular dynamics simulation ; carbon nanotube ; orthogonal and axial electric field ; flow of water ; free energy
  • 刊名:Russian Journal of Physical Chemistry A, Focus on Chemistry
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:89
  • 期:11
  • 页码:2120-2125
  • 全文大小:701 KB
  • 参考文献:1.F. Q. Zhu, E. Tajkhorshid, and K. Schulte, Biophys. J. 86, 50 (2004).CrossRef
    2.F. Q. Zhu, E. Tajkhorshid, and K. Schulte, Biophys. J. 83, 154 (2002).CrossRef
    3.M. D. Ma, L. Shen, J. Sheridan, et al., Phys. Rev. E 83, 36316 (2011).CrossRef
    4.G. Humme, J. C. Rasaiah, and J. P. Noworyt, Nature 414, 188 (2001).CrossRef
    5.S. Joseph and N. R. Aluru, Phys. Rev. Lett. 101, 064502 (2008).CrossRef
    6.R. Wan, H. Lu, and J. Li, Phys. Chem. Chem. Phys. 11, 9898 (2009).CrossRef
    7.J. K. Holt, H. G. Park, Y. M. Wang, et al., Science 312, 1034 (2006).CrossRef
    8.J. T. Frey and D. J. Doren, TubeGen Online (University of Delaware, Newark DE, 2011). http:// turin.nss.udel.edu/research/tubegenonline.htm.
    9.D. van der Spoel, J. Comput. Chem. 26, 1701 (2005).CrossRef
    10.H. Ga, Nano Lett. 3, 471 (2003).CrossRef
    11.M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford Science Publ., 1987).
    12.S. Vaitheeswaran, H. Yin, and J. C. Rasaiah, J. Phys. Chem. B 109, 6629 (2005).CrossRef
    13.J. Y. Li, X. J. Gong, H. J. Lu, et al., Proc. Natl. Acad. Sci. USA 104, 3687 (2007).CrossRef
    14.A. V. Raghunathan and N. R. Aluru, Phys. Rev. Lett. 97, 1 (2006).CrossRef
    15.M. E. Suk and N. R. Aluru, Phys. Chem. Chem. Phys. 11, 8614 (2009).CrossRef
    16.X. J. Gong, J. Y. Li, H. J. Lu, et al., Nature Nanotechnol. 2, 709 (2007).CrossRef
    17.C. Y. Won, S. Joseph, and N. R. Aluru, J. Chem. Phys. 125, 117701 (2006).CrossRef
    18.J. A. Garate, N. J. English, and J. M. D. MacElroy, J. Chem. Phys. 131, 8 (2009).CrossRef
    19.J. Dzubiella, R. J. Allen, and J. P. Hansen, J. Chem. Phys. 120, 5001 (2004).CrossRef
    20.G. E. Zhen-Peng, S. H. Yan-Chao, and L. Xiao-Yi, Acta Phys.-Chim. Sin. 29, 1655 (2013).
    21.J. Y. Su and H. X. Guo, ACS Nano 5, 351 (2011).CrossRef
  • 作者单位:Maryam Ghadamgahi (1)
    Davood Ajloo (1) (2)

    1. School of Chemistry, Damghan University, Damghan, Iran
    2. Department of Physical Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Physical Chemistry
    Russian Library of Science
  • 出版者:MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC.
  • ISSN:1531-863X
文摘
In this study, we have investigated how to control the net flux of water molecules transported through a CNT using an orthogonal and axial electric field. The flow of water molecules through CNT decrease as the orthogonal electric field strength (E) increased from 1 to 3 V nm-. When E increases over 3 V nm-, the flow of water molecules through the CNT was turned off and zero water flow was observed. Both the number of water molecules in tube and free energy values was influenced by water flow. A reverse behavior was observed in the case of axial electric field by constantly maintaining electric field direction in the direction of the water flow. Increase of water flow with E of axial electric field was revealed and it can be concluded that water permeation through CNT is much sensitive to the axial electric field strength than the orthogonal electric field. Keywords molecular dynamics simulation carbon nanotube orthogonal and axial electric field flow of water free energy

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700