用户名: 密码: 验证码:
Kinetic analysis of the non-isothermal degradation of high-density polyethylene filled with multi-wall carbon nanotubes
详细信息    查看全文
  • 作者:P. Rajeshwari
  • 关键词:Multi ; wall carbon nanotubes ; Polymer nanocomposites ; Kinetic analysis ; Model free ; Model fitting ; Kinetic parameters ; Electron microscopy
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:123
  • 期:2
  • 页码:1523-1544
  • 全文大小:2,748 KB
  • 参考文献:1.Chu CC, White KL, Liu P, Zhang X, Sue HJ. Electrical conductivity and thermal stability of polypropylene containing well-dispersed multi-walled carbon nanotubes disentangled with exfoliated nanoplatelets. Carbon. 2012;50:4711–21.CrossRef
    2.Batista NL, Costa ML, Iha K, Botelho EC. Thermal degradation and lifetime estimation of poly(ether imide)/carbon fiber composites. J Thermoplast Compos Mater. 2013;. doi:10.​1177/​0892705713484740​ .
    3.Pandey JK, Reddy KR, Kumar AP, Singh RP. An overview on the degradability of polymer nanocomposites. Polym Degrad Stab. 2005;88:234–50.CrossRef
    4.Breuer O, Sundararaj U. Big returns from small fibers: a review of polymer/carbon nanotube composites. Polym Compos. 2004;25:630–41.CrossRef
    5.Jung YJ, Kar S, Talapatra S, Soldano C, Viswanathan G, Li X, Yao Z, et al. Aligned carbon nanotube-polymer hybrid architectures for diverse flexible electronic applications. Nano Lett. 2006;6:413–8.CrossRef
    6.Zabihi O, Omrani A, Rostami AA. Thermo-oxidative degradation kinetics and mechanism of the system epoxy nano-composite reinforced with nano-Al2O3. J Therm Anal Calorim. 2012;108:1251–60.CrossRef
    7.Jankovic B, Cincovic MM, Jovanovic V, Jovanovic SS, Markovic G. Kinetic analysis of nonisothermal degradation of acrylonitrile–butadiene/ethylene–propylene–diene rubber blends reinforced with carbon black filler. Polym Compos. 2012;33:1233–43.CrossRef
    8.Erceg M, Kovacic T, Klaric I. Poly (3-hydroxybutyrate) nanocomposites: isothermal degradation and kinetic analysis. Thermochim Acta. 2009;485:26–32.CrossRef
    9.Shih YF. Thermal degradation and kinetic analysis of biodegradable pbs/multiwalled carbon nanotube nanocomposites. J Polym Sci. Part B: Polym Phys. 2009;47:1231–9.CrossRef
    10.Erceg M, Kovacic T, Perinovic S. Kinetic analysis of the non-isothermal degradation of poly(3-hydroxybutyrate) nanocomposites. Thermochim Acta. 2008;476:44–50.CrossRef
    11.Turmanova SC, Genieva SD, Dimitrova AS, Vlaev LT. Non-isothermal degradation kinetics of filled with rise husk ash polypropene composites. Express Polym Lett. 2008;2:133–46.CrossRef
    12.Lee JY, Liao Y, Nagahata R, Horiuchi S. Effect of metal nanoparticles on thermal stabilization of polymer/metal nano-composites prepared by a one-step dry process. Polymer. 2006;47:7970–9.CrossRef
    13.Ceamanos J, Mastral JF, Millera A, Aldea ME. Kinetics of pyrolysis of high density polyethylene. Comparison of isothermal and dynamic experiments. J Anal Appl Pyrol. 2002;65(2):93–110.CrossRef
    14.Peterson DJ, Vyazovkin S, Wight CA. Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene). Macromol Chem Phys. 2001;202:775–84.CrossRef
    15.Malek J. The kinetic analysis of non-isothermal data. Thermochim Acta. 1992;200:257–69.CrossRef
    16.Criado JM, Malek J, Ortega A. Applicability of the master plots in kinetic analysis of a non-isothermal rate. Thermochim Acta. 1989;147:377–85.CrossRef
    17.Paik P, Kar KK. Thermal degradation kinetics and estimation of lifetime of polyethylene particles: effects of particle size. Mater Chem Phys. 2009;113(2–3):953–6.CrossRef
    18.Sanchez-Jimenez PE, Perez-Maqueda LA, Perejon A, Criado JM. Combined kinetic analysis of thermal degradation of polymeric materials under any thermal pathway. Polym Degrad Stab. 2009;94:2079–85.CrossRef
    19.Perez-Maqueda LA, Criado JM, Sanchez-Jimenez PE, Dianez MJ. Applications of sample-controlled thermal analysis (SCTA) to kinetic analysis and synthesis of materials. J Therm Anal Calorim. 2015;120:45–51.CrossRef
    20.Zabihi O, Khodabandeh A. Understanding of thermal/thermo-oxidative degradation kinetics of polythiophene nanoparticles. J Therm Anal Calorim. 2013;112:1507–13.CrossRef
    21.Vyazovkin S, Burnham AK, Criado JM, Maqueda LA, Popescu C, Sbirrazzuoli N. Ictac kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.CrossRef
    22.Chrissafis K. Kinetics of thermal degradation of polymers complementary use of iso-conversional and model-fitting methods. J Therm Anal Calorim. 2009;95:273–83.CrossRef
    23.Budrugeac P, Segal E, Perez-Maqueda LA, Criado JM. The use of the IKP method for evaluating the kinetic parameters and the conversion function of the thermal dehydrochlorination of PVC from non-isothermal data. Polym Degrad Stab. 2004;84(2):311–20.CrossRef
    24.Tang W, Liu Y, Zhang H, Wang C. New approximate formula for Arrhenius temperature integral. Thermochim Acta. 2003;408:39–43.CrossRef
    25.Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRef
    26.Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry: application to a phenolic plastic. J Polym Sci Part C. 1964;6:183–95.CrossRef
    27.Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.CrossRef
    28.Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand: Part A. 1966;70:487–523.CrossRef
    29.Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol. (Sci Technol). 1971;16:22–31.
    30.Coats AW, Redfern JP. Kinetics parameters from thermogravimetric data. Nature. 1964;201:68–9.CrossRef
    31.Volder MFLD, Tawfick SH, Baughman RH, Hart AJ. Carbon nanotubes: present and future commercial applications. Science. 2013;339:535–9.CrossRef
    32.Kumar AP, Depan D, Tomer NS, Singh RP. Nanoscale particles for polymer degradation and stabilization—trends and future perspectives. Prog Polym Sci. 2009;34:479–515.CrossRef
    33.Bikiaris D, Vassiliou A, Chrissafis K, Paraskevopou-los KM, Jannakoudakis A, Docoslis A. Effect of acid treated multi-walled carbon nanotubes on the mechanical, permeability, thermal properties and thermo-oxidative stability of isotactic polypropylene. Polym Degrad Stab. 2008;93:952–67.CrossRef
    34.Chrissafis K, Paraskevopoulos KM, Stavrev SY, Docoslis A, Vassiliou A, Bikiaris DN. Characterization and thermal degradation mechanism of isotactic polypropylene/carbon black nanocomposites. Thermochim Acta. 2007;465:6–17.CrossRef
    35.Palacios J, Albano C, Gonzalez G, Castillo RV, Karam A, Covis M. Characterization and thermal degradation of poly(d, l-lactide-co-glycolide) composites with nanofillers. Polym Eng Sci. 2013;53:1414–29.
    36.Sahoo NG, Rana S, Cho JW, Li L, Chan SH. Polymer nano-composites based on functionalized carbon nanotubes. Prog Polym Sci. 2010;35:837–67.CrossRef
    37.Moniruzzaman M, Winey KI. Polymer nanocomposites containing carbon nanotubes. Macromolecules. 2006;39:5194.
    38.Iijima S. Helical microtubles of graphitic carbon. Nature. 1991;354:56–8.
    39.Jose MV, Steinert BW, Thomas V, Dean DR, Abdalla MA, Price G, Janowski GM. Morphology and mechanical properties of Nylon 6/MWNT nanofibers. Polymer. 2007;48:1096–104.CrossRef
    40.Xie XL, Mai YW, Zhou XP. Dispersion and alignment of carbon nano-tubes in polymer matrix: a review. Mater Sci Eng, R. 2005;49(4):89–112.CrossRef
    41.Rakhimkulov AD, Lomakin SM, Dubnikova IL, Shchegolikhin AN, Davidov EY, Kozlowski R. The effect of multi-walled carbon nanotubes addition on the thermo-oxidative decomposition and flammability of PP/MWCNT nanocomposites. J Mater Sci. 2010;45:633–40.CrossRef
    42.Chrissafis K, Paraskevopoulos KM, Tsiaoussis I, Bikiaris D. Comparative study of the effect of different nanoparticles on the mechanical properties, permeability, and thermal degradation mechanism of HDPE. J Appl Polym Sci. 2009;114:1606–18.CrossRef
    43.Pilawka R, Paszkiewicz S, Rosłaniec Z. Thermal degradation kinetics of PET/SWCNTs nano-composites prepared by the in situ polymerization. J Therm Anal Calorim. 2013;. doi:10.​1007/​s10973-013-3239-4 .
    44.Li J, Tong L, Fang Z, Gu A, Xu Z. Thermal degradation behavior of multi-walled carbon nanotubes/polyamide 6 composites. Polym Degrad Stab. 2006;91:2046–52.CrossRef
    45.Vassiliou AA, Chrissafis CK, Bikiaris CDN. Thermal degradation kinetics of in situ prepared PET nanocomposites with acid-treated multi-walled carbon nanotubes. J Therm Anal Calorim. 2010;100:1063–71.CrossRef
    46.Sarkar S, Das PK, Bysakh S. Effect of heat treatment on mor-phology and thermal decomposition kinetics of multiwalled car-bon nanotubes. Mater Chem Phys. 2011;125:161–7.CrossRef
    47.Sarkar S, Das PK. Non-isothermal oxidation kinetics of single- and multi-walled carbon nanotubes up to 1273 K in ambient. J Therm Anal Calorim. 2012;107:1093–103.CrossRef
    48.Galli P, Vecellio G. Polyolefins: the most promising large-volume materials for the 21st century. J Polym Sci Part A: Polym Chem. 2004;42:396–415.CrossRef
    49.Rajeshwari P, Dey TK. Structural and thermal properties of HDPE/n-AlN polymer nanocomposites. J Therm Anal Calorim. 2014;118:1513–30.CrossRef
    50.Park JW, Oh SC, Lee HP, Kim HT, Yoo KO. A kinetic analysis of thermal degradation of polymers using a dynamic method. Polym Degrad Stab. 2000;67:535–40.CrossRef
    51.Chrissafis K, Paraskevopoulos KM, Pavlidou E, Bikiaris D. Thermal degradation mechanism of HDPE nanocomposites containing fumed silica nanoparticles. Thermochim Acta. 2009;485:65–71.CrossRef
    52.Chrissafis K, Bikiaris D. Can nanoparticles really enhance thermal stability of polymers? Part I: an overview on thermal decomposition of addition polymers. Thermochim Acta. 2011;523:1–24.CrossRef
    53.Marazzato C, Peneva Y, Lefterova E, Filippi S, Minkova L. Kinetics of non-isothermal degradation of nanocomposites based on functionalized polyethylenes. Polym Test. 2007;26:526–36.CrossRef
    54.Zheng X, Wilkie CA. Nanocomposites based on poly (E-caprolactone) (PCL)/clay hybrid: polystyrene, high impact polystyrene, ABS, polypropylene and polyethylene. Polym Degrad Stab. 2003;82:441–50.CrossRef
    55.Qiu L, Chen W, Qu B. Morphology and thermal stabilization mechanism of LLDPE/MMT and LLDPE/LDH nanocomposites. Polymer. 2006;46:922–30.CrossRef
    56.Criado JM, Ortega A. Analysis of the shape index of DTG or DTA curves under a hyperbolic or logarithmic schedule. Thermochim Acta. 1986;103:317–23.CrossRef
    57.Doyle CD. Series approximations to the equation of thermo-gravimetric data. Nature. 1965;207:290–1.CrossRef
    58.Murray P, White J. Kinetics of the thermal dehydration of clays. IV. Interpretation of the differential thermal analysis of the clay minerals. Trans Brot Ceram Soc. 1955;54:204–37.
    59.Lesnikovich AI, Levchik SV. A method of finding invariant values of kinetic parameters. J Therm Anal. 1983;27:89–94.CrossRef
    60.Tiptipakorn S, Damrongsakkul S, Ando S, Hemvichian K, Rim-dusit S. Thermal degradation behaviors of polybenzoxazine and silicon-containing polyimide blends. Polym Degrad Stabil. 2007;92:1265–78.CrossRef
    61.Senum GI, Yang RT. Rational approximations of the integral of the Arrhenius functions. J Therm Anal. 1977;11:445–7.CrossRef
    62.Flynn JH. The temperature integral—its use and abuse. Thermochim Acta. 1997;300:83–92.CrossRef
    63.Doyle CD. Estimating thermal stability of experimental polymers by empirical thermogravimetric analysis. Anal Chem. 1961;33:77–9.CrossRef
    64.Zabihi O, Khodabandeh A, Mostafavi SM. Preparation, optimization and thermal characterization of a novel conductive thermoset nanocomposite containing polythiophene nanoparticles using dynamic thermal analysis. Polym Degrad Stabil. 2012;97:3–13.CrossRef
    65.Schnabel W. Polymer degradation: principles and practical applications, chap 2. Munich: Carl Hanser Verlag; 1982.
    66.Budrugeac P. Some methodological problems concerning the kinetic analysis of non-isothermal data for thermal and thermo-oxidative degradation of polymers and polymeric materials. Polym Degrad Stab. 2005;89(2):265–73.CrossRef
    67.Budrugeac P, Segal E. Some methodological problems concerning nonisothermal kinetic analysis of heterogeneous solid–gas reactions. Int J Chem Kinet. 2001;33:564–73.
    68.Vyazovkin S, Sbirrazzuoli N. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun. 2006;27:1515–32.CrossRef
    69.Pérez-Maqueda LA, Criado JM, Gotor FJ, Malek J. Advantages of combined kinetic analysis of experimental data obtained under any heating profile. J Phys Chem A. 2002;106:2862–8.CrossRef
    70.Vyazovkin S, Lesnikovich AI. An approach to the solution of the inverse kinetic problem in the case of complex processes. Part 1. Methods employing a series of thermoanalytical curves. Thermochim Acta. 1990;165:273–80.CrossRef
    71.Maciejewski M. Computational aspects of kinetic analysis. Part B: the ICTAC Kinetics Project-the decomposition kinetics of calcium carbonate revisited, or some tips on survival in the kinetic minefield. Thermochim Acta. 2000;355:145–54.CrossRef
    72.Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta. 1999;340(341):53–68.CrossRef
    73.Sanchez-Jimenez PE, Perez-Maqueda LA, Perejon A, Criado JM. Nanoclay nucleation effect in the thermal stabilization of a polymer nanocomposite: a kinetic mechanism change. J Phys Chem C. 2012;116:11797–807.CrossRef
    74.Sanchez-Jimenez PE, Perez-Maqueda LA, Perejon A, Criado JM. Generalized kinetic master plots for the thermal degradation of polymers following a random scission mechanism. J Phys Chem A. 2010;114:7868–76.CrossRef
    75.Sanchez-Jimenez PE, Perez-Maqueda LA, Perejon A, Criado JM. A new model for the kinetic analysis of thermal degradation of polymers driven by random scission. Polym Degrad Stabil. 2010;95:733–9.CrossRef
  • 作者单位:P. Rajeshwari (1)

    1. Cryogenic Engineering Centre, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Sciences
    Polymer Sciences
    Physical Chemistry
    Inorganic Chemistry
    Measurement Science and Instrumentation
  • 出版者:Akad茅miai Kiad贸, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic
  • ISSN:1572-8943
文摘
The thermal stability and non-isothermal degradation kinetics of high-density polyethylene (HDPE)/multi-wall carbon nanotube (MWNT) nanocomposites were studied by thermogravimetric and derivative thermogravimetric analyses using multiple heating rates (5, 10, 15, 20 °C min−1) under nitrogen gas atmosphere. A series of HDPE/MWNT composites of various vol% concentration of nanotubes were fabricated using melt mixing process. The morphology and nanostructure of prepared nanocomposites was examined by field emission scanning electron microscopy (FESEM). The kinetic parameters were evaluated using multiple heating rate-based four different “model-free” methods (viz., Kissinger, Friedman, Flynn–Wall–Ozawa, and Kissinger–Akhaira–Sunose) and single heating rate-based one “model-fitting” method (Tang approach), and 18 kinetic model equations were used. FESEM images confirmed that the dispersion and distribution of the MWNTs in the HDPE polymer matrix was homogeneous. The kinetic parameters [E a, A, n, and k (Arrhenius constant at 600 °C)] for all the samples studied were calculated. The highest values of E a, A, and n were found for the composites filled with 0.25 vol% MWNTs. For various vol% concentrations of HDPE/MWNT nanocomposites, the dependence of the apparent activation energy (E a) on fractional conversion (α) showed two-stage decomposition process, within the conversion window (0.05 ≤ TypeItalic ">α ≤ 0.95). Invariant kinetic parameter method (IKP) has been employed for all investigated nanocomposite system. A linear dependence between ln(A i) and E a,i was observed, making use of so-called compensation effect. Using IKP method, the values of the artificial isokinetic temperature “T iso” and artificial isokinetic rate constant “k iso” have been also estimated for all heating rates and found increases with increase in the heating rate (β). In addition, the dependence of lnA α on α was evaluated, and it was found that the lnA α revealed the same dependence on α as the apparent activation energies (E a) versus α plot shown. In order to estimate the kinetic degradation mechanism(s) of investigated system, Criado method was employed. The thermal decomposition kinetics of HDPE/MWNT composites were found to be best described by kinetic equations of n th order (AnFn and Dn mechanisms) to be more precise A1F1 → D1 → D2 kinetic models. Keywords Multi-wall carbon nanotubes Polymer nanocomposites Kinetic analysis Model free Model fitting Kinetic parameters Electron microscopy

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700