用户名: 密码: 验证码:
Effective harvesting, detection, and conversion of IR radiation due to quantum dots with built-in charge
详细信息    查看全文
  • 作者:Kimberly Sablon (1)
    Andrei Sergeev (2)
    Nizami Vagidov (2)
    Andrei Antipov (2)
    John Little (1)
    Vladimir Mitin (2)
  • 关键词:quantum dot ; infrared photodetector ; solar cell ; photoresponse ; doping ; potential barrier ; capture processes
  • 刊名:Nanoscale Research Letters
  • 出版年:2011
  • 出版时间:December 2011
  • 年:2011
  • 卷:6
  • 期:1
  • 全文大小:2026KB
  • 参考文献:1. Sergeev A, Chien L-H, Vagidov N, Mitin V: Quantum-dot infrared photodetectors: in search of right design for room-temperature operation. / Future Trends in Microelectronics: From Nanophotonics to Sensors to Energy 2010, 385. CrossRef
    2. Wolf M: Limitations and possibilities for improvement of photovoltaic solar energy converters. / Proc IRE 1960, 48:1246. CrossRef
    3. Shockley W, Queisser HJ: Detailed balance limit of efficiency of p-n junction solar cells. / J Appl Phys 1961, 32:510. CrossRef
    4. Takamoto T, Agui T, Washio H, Takanashi N, Nakamura K, Anzawa O, Kaneiwa M, Kamimura K, Okamoto K: Future development of InGaP/(In)GaAs based multijunction solar cells. / Proceedings of the 31st IEEE PVSC: January 3鈥? 2005; Orlando 2005, 519鈥?24.
    5. Chiu M-Y, Chang C-H, Tsai M-A, Chang F-Y, Yu P: Improved optical transmission and current matching of a triple-junction solar cell utilizing sub-wavelength structures. / Optics Express 2010, 18:A308. CrossRef
    6. Guter W, Sch枚ne J, Philipps SP, Steiner M, Siefer G, Wekkeli A, Welser E, Oliva E, Bett AW, Dimroth F: Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight. / Appl Phys Lett 2009, 94:223504. CrossRef
    7. Luque A, Marti A: Increasing the efficiency of ideal solar cells by photon induced transition at intermediate levels. / Phys Rev Lett 1997, 78:5014. CrossRef
    8. Popescu V, Bester G, Hanna MC, Norman AG, Zunger A: Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In, Ga)As/Ga(As, P) quantum dot solar cells. / Phys Rev B 2008, 98:205321. CrossRef
    9. Luque A, Marti A, Nozik J: Solar cells based on quantum dots: multiple exciton generation and intermediate bands. / MRS Bulletin 2007, 32:236. CrossRef
    10. Mitin V, Antipov A, Sergeev A, Vagidov N, Eason D, Strasser G: Quantum dot infrared photodetectors: photoresponse enhancement due to potential barriers. / Nanoscale Research Letters 2011, 6:21.
    11. Sablon KA, Mitin V, Sergeev A, Little JW, Vagidov N, Reinhardt K, Olver KA: Nanoscale engineering: optimizing electron-hole kinetics of quantum dot solar cells. In / Proceedings of SPIE: April 25 2011; Orlando. Edited by: Nibir K Dhar, Priyalal S Wijewarnasuriya, Achyut K Dutta. SPIE; 2011:80350M.
    12. Hubbard SM, Plourde C, Bittner Z, Bailey CG, Harris M, Bald T, Bennett M, Forbes DV, Raffaelle R: InAs quantum dot enhancement of GaAs solar cells. / Proceedings of the 35th IEEE PVSC: June 20鈥?5 2010; Honolulu 2010, 1217.
    13. nextnano 3 Semiconductor Software Solutions [http://www.nextnano.de/index.php]
    14. Sergeev A, Mitin V, Stroscio M: Quantum-dot photodetector operating at room temperatures: diffusion-limited capture. / Physica B 2002, 316鈥?17:369. CrossRef
    15. Bonch-Bruevich VL: Concerning question of recombination of hot electrons. / Sov Phys Solid State 1965, 6:1615.
    16. Mitin VV, Pipa VI, Sergeev AV, Dutta M, Stroscio M: High-gain quantum-dot infrared photodetector. / Infrared Phys & Technol 2001, 42:467. CrossRef
    17. Chien L-H, Sergeev A, Mitin V, Oktyabrsky S: Quantum dot photodetectors based on structures with collective potential barriers. In / Proceedings of SPIE: January 24 2010; San Francisco. Edited by: Manijeh Razeghi, Rengarajan Sudharsanan, Gail J Brown. SPIE; 2010:760826.
    18. Oshima R, Takata A, Okada Y: Strain-compensated InAs/GaNAs quantum dots for use in high-efficiency solar cells. / Appl Phys Lett 2008, 93:083111. CrossRef
    19. Hubbard SM, Cress CD, Bailey CG, Raffaelle RP, Bailey SG, Wilt DM: Effect of strain compensation on quantum dot enhanced GaAs solar cells. / Appl Phys Lett 2008, 92:123512. CrossRef
    20. Guimard D, Morihara R, Bordel D, Tanabe K, Wakayama Y, Nishioka M, Arakawa Y: Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage. / Appl Phys Lett 2010, 96:203507. CrossRef
    21. Zhou D, Vullum PE, Sharma G, Thomassen SF, Holmestad R, Reenaas TW, Fimland BO: Positioning effects on quantum dot solar cells grown by molecular beam epitaxy. / Appl Phys Lett 2010, 96:083108. CrossRef
  • 作者单位:Kimberly Sablon (1)
    Andrei Sergeev (2)
    Nizami Vagidov (2)
    Andrei Antipov (2)
    John Little (1)
    Vladimir Mitin (2)

    1. U.S. Army Research Laboratory, Powder Mill Road, Adelphi, MD, 20783-1197, USA
    2. University at Buffalo, State University of New York, Buffalo, NY, 14260-1920, USA
  • ISSN:1556-276X
文摘
We analyze the effect of doping on photoelectron kinetics in quantum dot [QD] structures and find two strong effects of the built-in-dot charge. First, the built-in-dot charge enhances the infrared [IR] transitions in QD structures. This effect significantly increases electron coupling to IR radiation and improves harvesting of the IR power in QD solar cells. Second, the built-in charge creates potential barriers around dots, and these barriers strongly suppress capture processes for photocarriers of the same sign as the built-in-dot charge. The second effect exponentially increases the photoelectron lifetime in unipolar devices, such as IR photodetectors. In bipolar devices, such as solar cells, the solar radiation creates the built-in-dot charge that equates the electron and hole capture rates. By providing additional charge to QDs, the appropriate doping can significantly suppress the capture and recombination processes via QDs. These improvements of IR absorption and photocarrier kinetics radically increase the responsivity of IR photodetectors and photovoltaic efficiency of QD solar cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700