用户名: 密码: 验证码:
Relationships between the use of Embden Meyerhof pathway (EMP) or Phosphoketolase pathway (PKP) and lactate production capabilities of diverse Lactobacillus reuteri strains
详细信息    查看全文
  • 作者:Grégoire Burgé ; Claire Saulou-Bérion ; Marwen Moussa…
  • 关键词:Lactobacillus reuteri ; microbial growth ; acidification kinetics ; glucose metabolism ; Embden ; Meyerhof pathway ; Phosphoketolase pathway ; lactate production
  • 刊名:Journal of Microbiology
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:53
  • 期:10
  • 页码:702-710
  • 全文大小:638 KB
  • 参考文献:Ahrné, S., Nobaek, S., Jeppsson, B., Adlerberth, I., Wold, A.E., and Molin, G. 1998. The normal Lactobacillus flora of healthy human rectal and oral mucosa. J. Appl. Microbiol. 85, 88-4.CrossRef PubMed
    ?rskold, E., Lohmeier-Vogel, E., Cao, R., Roos, S., R?dstrom, P., and van Niel, E.W.J. 2008. Phosphoketolase pathway dominates in Lactobacillus reuteri ATCC 55730 containing dual pathways for glycolysis. J. Bacteriol. 190, 206-12.PubMed Central CrossRef PubMed
    Casas, I.A. and Dobrogosz, W.J. 2000. Validation of probiotic concept: Lactobacillus reuteri confers broad-spectrum protection against disease in humans and animals. Microb. Ecol. Health Dis. 12, 247-85.
    Cotter, P.D., Hill, C., and Ross, R.P. 2005. Bacteriocins: Developing innate immunity for food. Nat. Rev. Microbiol. 3, 777-88.CrossRef PubMed
    Doleyres, Y., Beck, P., Vollenweider, S., and Lacroix, C. 2005. Production of 3-hydroxypropionaldehyde using a two-step process with Lactobacillus reuteri. Appl. Microbiol. Biotechnol. 68, 467-74.CrossRef PubMed
    Drozdzynska, A., Leja, K., and Czaczyk, K. 2011. Biotechnological production of 1.3-propanediol from crude glycerol. J. Biotechnol. Comput. Biol. Bionanotechnol. 92, 92-00.
    Frese, S.A., Benson, A.K., Tannock, G.W., Loach, D.M., Kim, J., Zhang, M., Oh, P.L., Heng, N.C.K., Patil, P.B., Juge, N., et al. 2011. The evolution of host specialization in the vertebrate gut symbiont Lactobacillus reuteri. PLoS Genet. 7, e1001314.PubMed Central CrossRef PubMed
    Garrigues, C., Loubi-re, P., Lindley, N.D., and Cocaign-Bousquet, M. 1997. Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio. J. Bacteriol. 179, 5282-287.PubMed Central PubMed
    Garrigues, C., Mercade, M., Cocaign-Bousquet, M., Lindley, N.D., and Loubi-re, P. 2001. Regulation of pyruvate metabolism in Lac tococcus lactis depends on the imbalance between catabolism and anabolism. Biotechnol. Bioeng. 74, 108-15.CrossRef PubMed
    Gilliland, S.E. 1990. Health and nutritional benefits from lactic acid bacteria. FEMS Microbiol. Rev. 87, 175-88.CrossRef
    Hansen, E.B. 2002. Commercial bacterial starter cultures for fermented foods of the future. Int. J. Food Microbiol. 78, 119-31.CrossRef PubMed
    Hugenholtz, J. and Smid, E.J. 2002. Nutraceutical production with food-grade microorganisms. Curr. Opin. Biotechnol. 13, 497-07.CrossRef PubMed
    Itoh, T. 1992. Functional benefits from lactic acid bacteria used in cultured milk. Anim. Sci. Technol. 63, 1276-289.
    Jiang, X., Meng, X., and Xian, M. 2009. Biosynthetic pathways for 3-hydroxypropionic acid production. Appl. Microbiol. Biotechnol. 82, 995-003.CrossRef PubMed
    Kandler, O. 1983. Carbohydrate metabolism in lactic acid bacteria. Antonie van Leeuwenhoek 49, 209-24.CrossRef PubMed
    Luo, L.H., Seo, J.W., Baek, J.O., Oh, B.R., Heo, S.Y., Hong, W., Kim, D.H., and Kim, C.H. 2011. Identification and characterization of the propanediol utilization protein PduP of Lactobacillus reuteri for 3-hydroxypropionic acid production from glycerol. Appl. Microbiol. Biotechnol. 89, 697-03.CrossRef PubMed
    L-thi-Peng, Q., Dileme, F.B., and Puhan, Z. 2002a. Effect of glucose on glycerol bioconversion by Lactobacillus reuteri. Appl. Microbiol. Biotechnol. 59, 289-96.CrossRef
    L-thi-Peng, Q., Sch- rer, S., and Puhan, Z. 2002b. Production and stability of 3-hydroxypropionaldehyde in Lactobacillus reuteri. Appl. Microbiol. Biotechnol. 60, 73-0.CrossRef
    Morita, H., Toh, H., Fukuda, S., Horikawa, H., and Oshima, K. 2008. Comparative genome analysis of Lactobacillus reuteri and Lactobacillus fermentum reveal a genomic island for reuterin and cobalamin production. DNA Res. 15, 151-61.PubMed Central CrossRef PubMed
    Picque, D., Perret, B., Latrille, E., and Corrieu, G. 1992. Caract-risation et classification de bact-ries lactiques - partir de la mesure de leur cin-tique d-acidification. Lebensmittel Wissenschaft und Technologie. 25, 181-86.
    Pieterse, B., Leer, R.J., Schuren, F.H.J., and van der Werf, M.J. 2005. Unravelling the multiple effects of lactic acid stress on Lactobacillus plantarum by transcription profiling. Microbiology 151, 3881-894.CrossRef PubMed
    Rodriguez, C., Rimaux, T., Fornaguera, M.J., Vrancken, G., Font de Valdez, G., De Vuyst, L., and Mozzi, F. 2012. Mannitol production by heterofermentative Lactobacillus reuteri CRL 1101 and Lactobacillus fermentum CRL 573 in free and controlled pH batch fermentations. Appl. Microbiol. Biotechnol. 93, 2519-527.CrossRef PubMed
    Rosander, A., Connolly, E., and Roos, S. 2008. Removal of antibiotic resistance gene-carrying plasmids from Lactobacillus reuteri ATCC 55730 and characterization of the resulting daughter strain, L. reuteri DSM 17938. Appl. Environ. Microbiol. 74, 6032-040.PubMed Central CrossRef PubMed
    R-tti, D.P., Lacroix, C., Jeremic, T., Mathis, M., Die, A., and Vollenweider, S. 2011.
  • 作者单位:Grégoire Burgé (1) (2) (3)
    Claire Saulou-Bérion (2) (3)
    Marwen Moussa (2) (3)
    Florent Allais (1) (2) (3)
    Violaine Athes (2) (3)
    Henry-Eric Spinnler (2) (3)

    1. Chaire Agro-Biotechnologies Industrielles (ABI) - AgroParisTech, 247 rue Paul Vaillant Couturier, F-51100, Reims, France
    2. AgroParisTech, UMR 782 Génie et Microbiologie des Procédés Alimentaires (GMPA), batiment CBAI, 1 avenue Lucien Brétignières, F-78850, Thiverval-Grignon, France
    3. INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires (GMPA), batiment CBAI, 1 avenue Lucien Brétignières, F-78850, Thiverval-Grignon, France
  • 刊物主题:Microbiology;
  • 出版者:Springer Netherlands
  • ISSN:1976-3794
文摘
The aims of this study is to compare the growth and glucose metabolism of three Lactobacillus reuteri strains (i.e. DSM 20016, DSM 17938, and ATCC 53608) which are lactic acid bacteria of interest used for diverse applications such as probiotics implying the production of biomass, or for the production of valuable chemicals (3-hydroxypropionaldehyde, 3-hydroxypropionic acid, 1,3-propanediol). However, the physiological diversity inside the species, even for basic metabolisms, like its capacity of acidification or glucose metabolism, has not been studied yet. In the present work, the growth and metabolism of three strains representative of the species diversity have been studied in batch mode. The strains were compared through characterization of growth kinetics and evaluation of acidification kinetics, substrate consumption and product formation. The results showed significant differences between the three strains which may be explained, at least in part, by variations in the distribution of carbon source between two glycolytic pathways during the bacterial growth: the phosphoketolase or heterolactic pathway (PKP) and the Embden-Meyerhof pathway (EMP). It was also shown that, in the context of obtaining a large amount of biomass, DSM 20016 and DSM 17938 strains were the most effective in terms of growth kinetics. The DSM 17938 strain, which shows the more significant metabolic shift from EMP to PKP when the pH decreases, is more effective for lactate production. Keywords Lactobacillus reuteri microbial growth acidification kinetics glucose metabolism Embden-Meyerhof pathway Phosphoketolase pathway lactate production

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700