用户名: 密码: 验证码:
Archie’s Law in Microsystems
详细信息    查看全文
  • 作者:B. Kozlov (12) kozlovb82@yahoo.fr
    M. H. Schneider (12)
    B. Montaron (3)
    M. Lagu?s (4)
    P. Tabeling (1)
  • 关键词:Archie’s law – Conductivity in rocks – Micromodels – Wettability – Invasion percolation
  • 刊名:Transport in Porous Media
  • 出版年:2012
  • 出版时间:October 2012
  • 年:2012
  • 卷:95
  • 期:1
  • 页码:1-20
  • 全文大小:1.4 MB
  • 参考文献:1. Abeles B., Pinch H.L., Gittleman J.I.: Percolation conductivity in W-Al2O3 granular metal films. Phys. Rev. Lett. 35, 247–250 (1975)
    2. Archie G.E.: The electrical Resistivity log as an aid in determining some reservoir characteristics. Pet. Trans. AIME 146, 54–62 (1942)
    3. Avraam D.G., Payatakes A.C.: Flow regimes and relative permeabilities during steady-state two-phase flow in porous media. J. Fluid Mech. 293, 207–236 (1995)
    4. Berkowitz B., Balberg I.: Percolation theory and its application to groundwater hydrology. Water Resour. Res. 29, 775–794 (1993)
    5. Bruggeman D.A.G.: Calculation of various physics constants in heterogenous substances. I. Dielectricity constants and conductivity of mixed bodies from isotropic substances. Ann. Phys. 24, 636–664 (1935)
    6. Cohen M.H.: Percolation conductivity in granular metal films. Phys. Rev. B 17(12), 4555–4557 (1978)
    7. Crandall D., Ahmadi G., Ferer M., Smith D.H.: Distribution and occurence of localized-bursts in two-phase flow through porous media. Physica A 388, 574–584 (2009)
    8. Derrida B., Vannimenus J.: A transfer matrix approach to random resistor networks. J. Phys. A 13, L557–L564 (1982)
    9. Duffy D.C., McDonald J.C., Cooper J., Schueller O.J.A., Whitesides G.M.: Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70, 4974–4984 (1998)
    10. Englman M., Yanuka R.: Bond-site percolation: empirical representation of critical probabilities. J. Phys. A 23(7), L339 (1990)
    11. Ewing R.P., Hunt A.G.: Dependence of the electrical conductivity on saturation in real porous media. Vadose Zone J. 5(2), 731–741 (2006)
    12. Ferer M., Bromhal G.S., Smith D.H.: Spatial distribution of avalanches in invasion percolation: their role in fingering. Physica A 311, 5–22 (2002)
    13. Ferer M., Bromahal G.S., Smith D.H.: Fractal dimension and avalanches of invasion percolation: the effect of aspect ratio. Physica A 334, 22–38 (2004)
    14. Granqvist C.G., Hunderi O.: Conductivity of inhomogeneous materials: effective-medium theory with dipole–dipole interactions. Phys. Rev. B 18(4), 1554–1560 (1978)
    15. Gleesona J.W., Woessnera D.E.: Three-dimensional and flow-weighted NMR imaging of pore connectivity in a limestone. Magn. Reson. Imag. 9(5), 879–884 (1991)
    16. Hatiboglu C.U., Babadagli T.: Pore-scale studies of spontaneous imbibition into oil-saturate porous media. Phys. Rev. E 77, 066311 (2008)
    17. Han M., Youssef S., Rosenberg S., Fleury M., Levitz P.: Deviation from Archie’s law in partially saturated porous media: wetting film versus disconnectedness of the conducting phase. Phys. Rev. E 79, 3 (2009)
    18. Katz A.J., Thompson A.H.: Fractal sandstone pores: implications for conductivity and pore formation. Phys. Rev. Lett. 54(12), 1326–1328 (1985)
    19. Kirkpatrick S.: Percolation and conduction. Rev. Mod. Phys. 45(4), 574–588 (1973)
    20. Kozlov B., Lagu?s M.: Universality of 3D percolation exponents and first-order corrections to scaling for conductivity exponents. Physica A 389, 5339–5346 (2010)
    21. Last B.J., Thouless D.J.: Percolation theory and electrical conductivity. Phys. Rev. Lett. 27(25), 1719–1721 (1971)
    22. Lenormand R., Zarcone C.: Invasion percolation in an etched network: measurement of a fractal dimension. Phys. Rev. Lett. 54(20), 2226–2229 (1985)
    23. Lenormand R., Touboul E., Zarcone C.: Numerical models and experiments on immiscible displacements in porous media. J. Fluid. Mech. 189, 165–187 (1988)
    24. Liu L., Yang Y., Zhang Y.: A study on the electrical conductivity of multi-walled carbon nanotube aqueous solution. Physica E 24, 343–348 (2004)
    25. McDonald J.C., Duffy D.C., Anderson J.R., Chiu D.T., Wu H.K., Schuelle O.J.A., Whitesides G.M.: Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21(1), 27–40 (2000)
    26. McLachlan D.S., Blaszkiewics M., Newnham R.E.: Electrical resistivity of composites. J. Am. Ceram. Soc. 73, 2187–2203 (1990)
    27. Montaron B.: Connectivity theory—a new approach to modeling non-Archie rocks. Petrophysics 50(2), 102–115 (2009)
    28. Okazaki A., Horibe K., Maruyama K., Miyazima S.: Experimental study of critical exponents of electrical conductivity in a two-dimensional continuum percolation system. Phys. Rev. E 61(6), 6215–6218 (2000)
    29. Randles J.E.B.: Kinetics of rapid electrodes reactions. Discuss. Faraday Soc. 1, 11–19 (1947)
    30. Schneider M.H., Willaime H., Tran Y., Rezgui F., Tabeling P.: Wettability patterning by UV-initiated graft polymerization of poly(acrylic acid) in closed microfluidic systems of complex geometry. Anal. Chem. 82(21), 8848–8855 (2010)
    31. Sen P.N., Scala C., Cohen M.H.: A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads. Geophysics 46(5), 781–795 (1981)
    32. Shankland R.J., Waff H.S.: Conductivity in fluid-bearing rock. J. Geophys. Res. 79, 4863–4871 (1974)
    33. Stillman D.E., Grimm R.E., Dec S.F.: Low-frequency electrical properties of ice–silicate mixtures. J. Phys. Chem. B 114, 6065–6073 (2010)
    34. Stroud D.: Generalized effective-medium approach to the conductivity of an inhomogeneous material. Phys. Rev. B 12(8), 3368–3373 (1975)
    35. Sweeney S.A., Jennings H.Y. Jr.: Effect of wettability on the electrical resistivity of carbonate rock from a petroleum reservoir. J. Phys. Chem 64, 551–553 (1960)
    36. Sykes M.F., Essam J.W.: Some exact critical percolation probabilities for bond and site problems in two dimensions. Phys. Rev. Lett. 10(1), 3–4 (1963)
    37. Sykes M.F., Essam J.W.: Exact critical percolation probabilities for site and bond problems in two dimensions. J. Math. Phys. 5, 8 (1964)
    38. Tabeling P.: Introduction to Microfluidics. Oxford University Press, Oxford (2005)
    39. Tinga W.R., Voss W.A.G., Blossey D.F.: Generalized approach to multiphase dielectric mixture theory. J. Appl. Phys. 44(9), 3897–3902 (1973)
    40. Toumelin, E., Torres-Verdín, C., Devarajan, S., Sun, B.: An integrated pore-scale approach for the simulation of grain morphology, wettability, and saturation-history effects on electrical resistivity and NMR measurements of saturated rocks. In: International Symposium of the Society of Core Analysts held in Trondheim, Norway, 12–16 September 2006, pp. 1–12
    41. Tsimpanogiannis I.N., Yortsos Y.C., Poulou S., Kanellopoulos N., Stubos A.K.: Scaling theory of drying in porous media. Phys. Rev. E 59(4), 4353–4365 (1999)
    42. Vizika O., Avraam D.G., Payatakes A.C.: On the role of the viscosity ratio during low-capillary-number forced imbibition in porous media. J. Colloid Interface Sci. 165, 386–401 (1994)
    43. Wang K.-W., Sun J.-M., Guan J.-T., Zhu D.-W.: A percolation study of electrical properties of reservoir rocks. Physica A 380, 19–26 (2007)
    44. Wei, J.Z., Lile, O.B.: Influence of wettability on two- and four-electrode resistivity measurements on Berea sandstone plugs. In: SPE Formation Evaluation, 6, 470–476 (1991)
    45. Weigert S., Eicke H.-F., Meier W.: Electric conductivity near the percolation transition of a nonionic water-in-oil microemulsion. Physica A 242(1–2), 95–103 (1997)
    46. Wilkinson D., Willemsen J.F.: Invasion percolation: a new form of percolation theory. J. Phys. A 16, 3365–3376 (1983)
    47. Worthington, P.F.: An electrical analog facility for hydrocarbon reservoirs. In: SPE Annual Technical Conference and Exhibition, Dallas, Texas, 9–12 October (2005)
    48. Xia Y., Whitesides G.M.: Soft lithography. Ann. Rev. Mater. Sci. 28, 153–184 (1998)
    49. Zhou D.G., Arbabi S., Stenby E.H.: A percolation study of wettability effect on the electrical properties of reservoir rocks. Transp. Porous Media 29(1), 85–98 (1997)
  • 作者单位:1. Laboratory of Microfluidics, UMR Gulliver, ESPCI, 10 rue Vauquelin, 75005 Paris, France2. Etudes et Production Schlumberger, 1 Rue Henri Becquerel, 92140 Clamart, France3. Schlumberger, 14 Jiuxianqiao Road, Chaoyang District, Beijing, 100015 China4. Espace Pierre-Gilles de Gennes, ESPCI, 10 rue Vauquelin, 75005 Paris, France
  • ISSN:1573-1634
文摘
Since 1942 Archie’s law is used every day to estimate, from electrical measurements, the quantity of oil present in oil fields. In this article, we perform the first experimental analysis of electric conductivity in well controlled models of porous media. We used microfluidic networks (called micromodels in the oil industry jargon), incorporating thousands of pores, with controlled wettability. Different electrode and pore geometries are considered. In all cases the evolution of the conductivity with the conductive fluid fraction (“saturation”) clearly reveals the presence of percolation thresholds, signaling that as the fraction of the conductive fluid decreases below some critical value, there are no more pathways involving only channels entirely filled with the conductive fluid that connect the electrodes. This behavior is observed in all cases, for all the network/electrode geometries and wetting properties we investigated, and is consequently likely to reflect a genuine behavior for microfluidic “2D” networks. The existing models—based on percolation theory or on mean field approach—reproduce correctly the structure of this behavior, but generally at a semi-quantitative level. The most successful case is obtained with the effective medium theory (EMT) model, with drainage and perpendicular electrodes. This outcome suggests that, despite the complexity of these systems, very simple models can describe correctly the physics of the system. Nonetheless, more precise modeling requires case-by-case studies. Our results are consistent with the current body of knowledge accumulated for decades on three-dimensional samples. The key point is that in 3D systems, owing to topological reasons, the threshold is extremely low in terms of water saturations. Archie’s law completely neglects the threshold effect. Nonetheless the percolation threshold should not be overlooked, and modeling should take this aspect systematically into account, as it is already done by several investigators.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700