用户名: 密码: 验证码:
Streptomyces ghanaensis VITHM1 mediated green synthesis of silver nanoparticles: Mechanism and biological applications
详细信息    查看全文
文摘
We present the microbial green synthesis of silver nanoparticles (NPs) by Streptomyces ghanaensis VITHM1 strain (MTCC No. 12465). The secondary metabolites in the cell free supernatant of this bacterium when incubated with 1 mmol/L AgNO3, mediated the biological synthesis of AgNPs. The synthesized AgNPs were characterized by UV-visible spectrum, X-ray diffraction (XRD), atomic force microscope, scanning electron microscopy equipped with energy dispersive spectroscopy, transmission electron microscopy, FT-IR spectroscopy, dynamic light scattering and zeta potential. They were highly stable and, spherical in shape with the average size of 30‒50 nm. The secondary metabolites involved in the formation of AgNPs were identified gas chromatographymass spectrography. The 3D structure of the unit cell of the synthesized AgNPs was determined using XRD data base. The synthesized AgNPs exhibited significant antibacterial activity against tested bacterial pathogens, and did not show haemolysis on human red blood cells. This green synthesis could provide a new platform to explore and use AgNPs as antibacterial therapeutic agents.KeywordsStreptomyces ghanaensis VITHM1nanoparticles3D structureantibacterial activityReferences1.Kavitha A, Prabhakar P, Vijayalakshmi M, Venkateswarlu Y. Purification and biological evaluation of the metabolites produced by Streptomyces sp. TK-VL_333. Research in Microbiology, 2010, 161(5): 335–345CrossRefGoogle Scholar2.Rai M K, Deshmukh S D, Ingle A P, Gade A K. Silver nanoparticles: The powerful nanoweapon against multidrug-resistant bacteria. Applied Microbiology, 2012, 112(5): 841–852CrossRefGoogle Scholar3.Sadowski Z, Maliszewska I H, Grochowalska B, Polowczyk I, Kozlecki T. Synthesis of silver nanoparticles using microorganisms. Materials Science Poland, 2008, 26: 419–424Google Scholar4.Rajeshkumar S, Malarkodi C, Paulkumar K, Vanaja M, Gnanajobitha G, Annadurai G. Intracellular and extracellular biosynthesis of silver nanoparticles by using marine bacteria Vibrio alginolyticus. Journal of Nanoscience and Nanotechnology, 2013, 3: 21–25Google Scholar5.Iravani S, Korbekandi H, Mirmohammadi S V. Zolfaghari B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Research in Pharmaceutical Sciences, 2014, 9: 385–406Google Scholar6.Kumar R, Roopan S M, Prabhakarn A, Khanna V G, Chakroborty S. Agricultural waste Annona squamosa peel extract: Biosynthesis of silver nanoparticles. Spectrochimica Acta. Part A: Molecular Spectroscopy, 2012, 90: 173–176CrossRefGoogle Scholar7.Khan A K, Rashid R, Murtaza G, Zahra A. Gold nanoparticles: Synthesis and applications in drug delivery. Tropical Journal of Pharmaceutical Research, 2014, 13(7): 1169–1177CrossRefGoogle Scholar8.Tiwari P M, Vig K, Dennis V K, Singh S R. Functionalized gold nanoparticles and their biomedical applications. Journal of Nanomaterials, 2011, 1(1): 31–63CrossRefGoogle Scholar9.Landage S M, Wasif A I. Nanosilver: An effective antimicrobial agent for finishing of textiles. International Journal of Engineering Sciences & Engineering Technologies, 2012, 4: 66–78Google Scholar10.Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian S R, Muniyandi J, Hariharan N, Eom S H. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids and Surfaces. B, Biointerfaces, 2009, 74(1): 328–335CrossRefGoogle Scholar11.Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian S R, Muniyandi J, Hariharan N, Eom S H. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids and Surfaces. B, Biointerfaces, 2009, 74(1): 328–335CrossRefGoogle Scholar12.Kalishwaralal K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangiliyandi G. Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Materials Letters, 2008, 62(29): 4411–4413CrossRefGoogle Scholar13.Choi J, Reipa V, Hitchins V M, Goering P L, Malinauskast R A. Physicochemical characterization and in vitro hemolysis evaluation of silver nanoparticles. Journal of Toxicological Sciences, 2011, 123(1): 133–143CrossRefGoogle Scholar14.Abirami M, khanna V G, Kannabiran K. Antibacterial activity of marine Streptomyces sp. isolated from Andaman & Nicobar Islands, India. International Journal of Pharma and Bio Sciences, 2013, 4: 280–286Google Scholar15.Thenmozhi M, Kannabiran K, Kumar R, Gopiesh K V. Antifungal activity of Streptomyces sp. VITSTK7 and its synthesized Ag2O/Ag nanoparticles against medically important Aspergillus pathogens. Journal of Medical Mycology, 2013, 23(2): 97–103CrossRefGoogle Scholar16.Bauer A W, Kirby W M, Sherris J C, Turck M. Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 1966, 45: 493–496Google Scholar17.Sanjenbam P, Gopal J V, Kannabiran K. Anticandidal activity of silver nanoparticles synthesized using Streptomyces sp. VITPK1. Journal de Mycologie Mdicale, 2014, 24(3): 211–219CrossRefGoogle Scholar18.Ruparelia J P, Chatterjee A K, Duttagupta S P, Mukherji S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomaterialia, 2008, 4(3): 707–716CrossRefGoogle Scholar19.Raveendran P, Fu J, Wallen S L. Completely green synthesis and stabilization of metal nanoparticles. Journal of the American Chemical Society, 2003, 125(46): 13940–13941CrossRefGoogle Scholar20.Sadhasivam S, Shanmugam P, Yun K. Biosynthesis of silver nanoparticles by Streptomyceshy groscopicus and antimicrobial activity against medically important pathogenic microorganisms. Colloids and Surfaces. B, Biointerfaces, 2010, 81(1): 358–362CrossRefGoogle Scholar21.Philip D. Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochimca Acta Part A: Molecular and Biomolecular spectroscopy, 2009, 73: 374–380CrossRefGoogle Scholar22.Azam A, Ahmed A S, Oves M, Khan M S, Habib S S, Memic A. Antimicrobial activity of metal oxide nanoparticles against Grampositive and Gram-negative bacteria: A comparative study. International Journal of Nanomedicine, 2012, 7: 6003–6009CrossRefGoogle Scholar23.Kumar S, Balachandran C, Duraipandian V, Ramasamy D, Ignacimuth I. AL-Dhabi N A. Extracellular biosynthesis of silver nanoparticle using Streptomyces sp. 09 PBT 005 and its antibacterial and cytotoxic properties. Applied Nanoscience, 2015, 5(2): 169–180CrossRefGoogle Scholar24.Das R K, Borthakur B B, Bora U. Green synthesis of gold nanoparticles using ethanolic leaf extract of Centella asiatica. Materials Letters, 2010, 64(13): 1445–1447CrossRefGoogle Scholar25.Kalishwaralal K, Deepak V, Pandian S R, Kottaisamy M, Barathmanikanth S, Kartikeyan B, Gurunathan S. Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids and Surfaces. B, Biointerfaces, 2010, 77(2): 257–262CrossRefGoogle Scholar26.Klueh U, Wagner V, Kelly S, Johnson A, Bryers J D. Efficacy of silver-coated fabric to prevent bacterial colonization and subsequent device-based biofilm formation. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 2000, 53(6): 621–631CrossRefGoogle Scholar27.Xiu Z M, Zhang Q B, Puppala H L, Colvin V L, Alvarez P J. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Letters, 2012, 12(8): 4271–4275CrossRefGoogle Scholar28.Lu Z, Rong K, Li J, Yang H, Chen R. Size-dependent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria. Journal of Materials Science. Materials in Medicine, 2013, 24(6): 1465–1471CrossRefGoogle Scholar29.Golinska P, Wypij M, Rathod D, Tickar S, Dahm H, Rai M. Synthesis of silver nanoparticles from two acidophilic strains of Pilimelia columellifera subsp. pallida and their antibacterial activities. Journal of Basic Microbiology, 2015, 56(5): 541–556CrossRefGoogle Scholar30.Railean-Plugaru V, Pomastowski P, Wypij M, Szultka-M Lynska M, Rafinska K, Golinska P, Dahm H, Buszewski B. Study of silver nanoparticles synthesized by acidophilic strain of actinobacteria isolated from the Picea sitchensis forest soil. Journal of Applied Microbiology, 2016, 120(5): 1250–1263CrossRefGoogle Scholar31.Kamel Z, Saleh M, El Namoury N. Biosynthesis, characterization, and antimicrobial activity of silver nanoparticles from actinomycetes. Research Journal of Pharmaceutical. Biological and Chemical Sciences, 2016, 1: 119–127Google Scholar32.Oves M, Khan M S, Zaidi A, Ahmed A S, Ahmed F, Ahmad E, Sherwani A, Owais M, Azam A. Antibacterial and cytotoxic efficacy of extracellular silver nanoparticles biofabricated from chromium reducing novel OS4 strain of Stenotrophomonas maltophilia. PLoS One, 2013, 8(3): e59140CrossRefGoogle ScholarCopyright information© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016Authors and AffiliationsMani Abirami1Krishnan Kannabiran1Email author1.Biomolecules and Genetic DivisionSchool of Biosciences and Technology, VIT UniversityTamil NaduIndia About this article CrossMark Publisher Name Higher Education Press Print ISSN 2095-0179 Online ISSN 2095-0187 About this journal Reprints and Permissions Article actions Export citation .RIS Papers Reference Manager RefWorks Zotero .ENW EndNote .BIB BibTeX JabRef Mendeley Share article Email Facebook Twitter LinkedIn Cookies We use cookies to improve your experience with our site. More information Accept Over 10 million scientific documents at your fingertips

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700